scholarly journals Antibacterial Activities of Methanol and Aqueous Extracts of Salvadora persica against Streptococcus mutans Biofilms: An In Vitro Study

2021 ◽  
Vol 9 (12) ◽  
pp. 143
Author(s):  
Abdulrahman A. Balhaddad ◽  
Lamia Mokeem ◽  
Mary Anne S. Melo ◽  
Richard L. Gregory

The use of herbal products in oral hygiene care has a long history, and their use is popular today. A tree stick, named Salvadora persica (S. persica), is commonly used to remove dental plaque and clean teeth in many countries. In addition, extracts of S. persica can be used as a mouthwash, as they demonstrate antimicrobial properties. This study aimed to investigate the antibacterial effect of S. persica methanol and aqueous extracts against Streptococcus mutans (S. mutans) biofilm. A S. mutans biofilm formation assay was conducted using different concentrations of S. persica methanol or water extracts in tryptic soy broth (TSB) supplemented with 1% sucrose. The biofilm was stained with crystal violet dye, and the absorbance was assessed to examine biofilm formation. One-way analysis of variance (ANOVA) and Tukey tests were used to analyze the results. The S. persica methanol extract displayed a significant inhibition (p ≤ 0.001) against the S. mutans biofilm. The 10 mg/mL concentration of the S. persica methanol extract was determined as the minimum biofilm inhibitory concentration (MBIC). The used methanol concentration, mixed with TSB supplemented with 1% sucrose and without the S. persica extract, did not inhibit the S. mutans biofilm. The S. persica aqueous extract did not demonstrate any biofilm inhibition at any concentration (p ≥ 0.05). The findings of this study suggest the potential of using S. persica methanol extract as a mouthwash or adjunctive to oral hygiene tools.

2020 ◽  
Vol 1 (2) ◽  
pp. 87-99 ◽  
Author(s):  
Christofora Hanny Wijaya ◽  
Bernadeta RE Sari ◽  
Boy M Bachtiar

Streptococcus mutans were competing Streptococcus sanguinis in biofilm formation. As pioneer colonizer, S. sanguinis were able to control S. mutans growth. This study was aimed to explore the ability of sucrose and non-sucrose cajuputs candies (SCC and NSCC) in maintaining the antagonistic relationship between the indigenous oral flora when they grew as dual-species biofilms (S. sanguinis and S. mutans). The flavored candies (SCC and NSCC) contained cajuput and peppermint oils as the flavor which the volatile compounds had been identified. The unflavored candies were made similar to the flavored candy but excluding the flavor. The flavored candies, unflavored candies, and the control were exposed in vitro to the biofilms. The biofilms were examined for biofilm inhibition capacity, DNA amount, and the expression level of spxB mRNA. The biofilm inhibition by flavored candies were higher than the unflavored ones and were significantly different compared to the control. The flavored candies managed to decrease the total DNA amount in the biofilm, but unflavored samples did not. The qPCR assays showed that the exposure of candies did not alter the proportion of S. sanguinis DNA to S. mutans DNA in the biofilms. Meanwhile, spxB mRNA expression indicated the ability of S.sanguinis to control S. mutans growth.


2015 ◽  
Vol 22 (2) ◽  
pp. 85-92
Author(s):  
Povilas Kalesinskas ◽  
Tomas Kačergius ◽  
Arvydas Ambrozaitis ◽  
Ryo Jimbo ◽  
Dan Ericson

Background. Biofilm formation by Streptococcus mutans bacteria on teeth leads to dental caries, which still remains one of the most prevalent human diseases strongly related to increase of dietary sucrose consumption in modern society. In the biofilm, sucrose is metabolized by S. mutans to acids causing tooth decay. S. mutans also produces glucosyltransferases (Gtfs) for synthesis of sticky glucan polymers from sucrose that provides matrix for biofilm formation on teeth. For reducing biofilm build-up, one preventive measure could be blocking of Gtf synthesis. The aim of this study was to test antisense phosphorothioate oligodeoxyribonucleotide (PS-ODN) targeting simultaneously S. mutans gtfB and gtfC mRNAs in order to inhibit biofilm formation in vitro. Materials and methods. S. mutans bacteria were grown anaerobically on glass slides inserted vertically in 24-well cell culture plates containing Todd Hewitt broth with sucrose under exposure to antisense or missense PS-ODNs at the final concentration of 10 μM. Untreated bacteria served as controls. After 24 h of incubation, glass slides were removed, air-dried and further used for the quantitative evaluation of the streptococci biofilm applying an optical profilometry technique. Results. It was revealed that antisense PS-ODN considerably reduced the most critical biofilm surface roughness parameter Sa (average difference between the peak hight and valleys) inhibiting the biofilm development by 46% and 77% in comparison to untreated (p = 0.06) and missense PS-ODN-treated bacteria (p < 0.05), respectively. Conclusions. The results demonstrate that antisense PS-ODN considerably decreases streptococci-induced biofilm development on glass slides, and might therefore significantly suppress dental biofilm formation through simultaneous inactivation of S. mutans gtfB and gtfC mRNAs.


Pathogens ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 66 ◽  
Author(s):  
Merajuddin Khan ◽  
Hamad Z. Alkhathlan ◽  
Shams Tabrez Khan

The use of organic components from plants as an alternative antimicrobial agent is becoming popular due to the development of drug-resistance in various pathogens. Essential oils from fresh (MF-1) and dried (MD-1) roots of Salvadora persica L. were extracted and benzyl isothiocynate was determined as their chief constituent using GC-MS and GC-FID. The antibiofilm and antimicrobial activities of MD-1 and MF-1 against Streptococcus mutans a dental caries causing bacteria were determined using multiple assays. These activities were compared with chlorhexidine digluconate (CHX) and clove oil, well known antimicrobial agents for oral hygiene. Essential oils demonstrated IC50 values (10–11 µg/mL) comparable to that of CHX, showed a significant reduction (82 ± 7–87 ± 6%) of the biofilm formation at a very low concentration. These results were supported by RT-PCR studies showing change in the expression levels of AtlE, gtfB, ymcA and sodA genes involved in autolysis, biofilm formation and oxidative stress, respectively. The results presented in this study show the robust bactericidal and antibiofilm activity of MD-1 and MF-1 against S. mutans which is comparable to Chlorhexidine digluconate. Our results suggest that these essential oils can be as effective as CHX and hence can serve as a good alternative antimicrobial agent for oral hygiene.


2014 ◽  
Vol 21 (9) ◽  
pp. 1206-1214 ◽  
Author(s):  
Lin Yan ◽  
Lei Zhang ◽  
Hongyan Ma ◽  
David Chiu ◽  
James D. Bryers

ABSTRACTNosocomial infections are the fourth leading cause of morbidity and mortality in the United States, resulting in 2 million infections and ∼100,000 deaths each year. More than 60% of these infections are associated with some type of biomedical device.Staphylococcus epidermidisis a commensal bacterium of the human skin and is the most common nosocomial pathogen infecting implanted medical devices, especially those in the cardiovasculature.S. epidermidisantibiotic resistance and biofilm formation on inert surfaces make these infections hard to treat. Accumulation-associated protein (Aap), a cell wall-anchored protein ofS. epidermidis, is considered one of the most important proteins involved in the formation ofS. epidermidisbiofilm. A small recombinant protein vaccine comprising a single B-repeat domain (Brpt1.0) ofS. epidermidisRP62A Aap was developed, and the vaccine's efficacy was evaluatedin vitrowith a biofilm inhibition assay andin vivoin a murine model of biomaterial-associated infection. A high IgG antibody response againstS. epidermidisRP62A was detected in the sera of the mice after two subcutaneous immunizations with Brpt1.0 coadministered with Freund's adjuvant. Sera from Brpt1.0-immunized mice inhibitedin vitroS. epidermidisRP62A biofilm formation in a dose-dependent pattern. After receiving two immunizations, each mouse was surgically implanted with a porous scaffold disk containing 5 × 106CFU ofS. epidermidisRP62A. Weight changes, inflammatory markers, and histological assay results after challenge withS. epidermidisindicated that the mice immunized with Brpt1.0 exhibited significantly higher resistance toS. epidermidisRP62A implant infection than the control mice. Day 8 postchallenge, there was a significantly lower number of bacteria in scaffold sections and surrounding tissues and a lower residual inflammatory response to the infected scaffold disks for the Brpt1.0-immunized mice than for of the ovalbumin (Ova)-immunized mice.


2010 ◽  
Vol 59 (10) ◽  
pp. 1225-1234 ◽  
Author(s):  
H. M. H. N. Bandara ◽  
O. L. T. Lam ◽  
R. M. Watt ◽  
L. J. Jin ◽  
L. P. Samaranayake

The objective of this study was to evaluate the effect of the bacterial endotoxin LPS on Candida biofilm formation in vitro. The effect of the LPS of Pseudomonas aeruginosa, Klebsiella pneumoniae, Serratia marcescens and Salmonella typhimurium on six different species of Candida, comprising Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, Candida tropicalis ATCC 13803, Candida parapsilosis ATCC 22019 and Candida dubliniensis MYA 646, was studied using a standard biofilm assay. The metabolic activity of in vitro Candida biofilms treated with LPS at 90 min, 24 h and 48 h was quantified by XTT reduction assay. Viable biofilm-forming cells were qualitatively analysed using confocal laser scanning microscopy (CLSM), while scanning electron microscopy (SEM) was employed to visualize the biofilm structure. Initially, adhesion of C. albicans was significantly stimulated by Pseudomonas and Klebsiella LPS. A significant inhibition of Candida adhesion was noted for the following combinations: C. glabrata with Pseudomonas LPS, C. tropicalis with Serratia LPS, and C. glabrata, C. parapsilosis or C. dubliniensis with Salmonella LPS (P<0.05). After 24 h of incubation, a significant stimulation of initial colonization was noted for the following combinations: C. albicans/C. glabrata with Klebsiella LPS, C. glabrata/C. tropicalis/C. krusei with Salmonella LPS. In contrast, a significant inhibition of biofilm formation was observed in C. glabrata/C. dubliniensis/C. krusei with Pseudomonas LPS, C. krusei with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. parapsilosis/C. dubliniensis /C. krusei with Salmonella LPS (P<0.05). On further incubation for 48 h, a significant enhancement of biofilm maturation was noted for the following combinations: C. glabrata/C. tropicalis with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. glabrata with Salmonella LPS, and a significant retardation was noted for C. parapsilosis/C. dubliniensis/C. krusei with Pseudomonas LPS, C. tropicalis with Serratia LPS, C. glabrata/C. parapsilosis/C. dubliniensis with Klebsiella LPS and C. dubliniensis with Salmonella LPS (P<0.05). These findings were confirmed by SEM and CLSM analyses. In general, the inhibition of the biofilm development of LPS-treated Candida spp. was accompanied by a scanty architecture with a reduced numbers of cells compared with the profuse and densely colonized control biofilms. These data are indicative that bacterial LPSs modulate in vitro Candida biofilm formation in a species-specific and time-dependent manner. The clinical and the biological relevance of these findings have yet to be explored.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fatemeh Ostadhossein ◽  
Parikshit Moitra ◽  
Esra Altun ◽  
Debapriya Dutta ◽  
Dinabandhu Sar ◽  
...  

AbstractDental plaques are biofilms that cause dental caries by demineralization with acidogenic bacteria. These bacteria reside inside a protective sheath which makes any curative treatment challenging. We propose an antibiotic-free strategy to disrupt the biofilm by engineered clustered carbon dot nanoparticles that function in the acidic environment of the biofilms. In vitro and ex vivo studies on the mature biofilms of Streptococcus mutans revealed >90% biofilm inhibition associated with the contact-mediated interaction of nanoparticles with the bacterial membrane, excessive reactive oxygen species generation, and DNA fragmentation. An in vivo examination showed that these nanoparticles could effectively suppress the growth of S. mutans. Importantly, 16S rRNA analysis of the dental microbiota showed that the diversity and richness of bacterial species did not substantially change with nanoparticle treatment. Overall, this study presents a safe and effective approach to decrease the dental biofilm formation without disrupting the ecological balance of the oral cavity.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 327 ◽  
Author(s):  
Mariana Espinosa-Valdés ◽  
Sara Borbolla-Alvarez ◽  
Ana Delgado-Espinosa ◽  
Juan Sánchez-Tejeda ◽  
Anabelle Cerón-Nava ◽  
...  

Infection from multidrug resistant bacteria has become a growing health concern worldwide, increasing the need for developing new antibacterial agents. Among the strategies that have been studied, biofilm inhibitors have acquired relevance as a potential source of drugs that could act as a complement for current and new antibacterial therapies. Based on the structure of 2-alkyl-3-hydroxy-4-quinolone and N-acylhomoserine lactone, molecules that act as mediators of quorum sensing and biofilm formation in Pseudomonas aeruginosa, we designed, prepared, and evaluated the biofilm inhibition properties of long chain amide derivatives of 2-amino-4-quinolone in Staphylococcus aureus and P. aeruginosa. All compounds had higher biofilm inhibition activity in P. aeruginosa than in S. aureus. Particularly, compounds with an alkyl chain of 12 carbons exhibited the highest inhibition of biofilm formation. Docking scores and molecular dynamics simulations of the complexes of the tested compounds within the active sites of proteins related to quorum sensing had good correlation with the experimental results, suggesting the diminution of biofilm formation induced by these compounds could be related to the inhibition of these proteins.


2013 ◽  
Vol 41 (7) ◽  
pp. 619-627 ◽  
Author(s):  
Dongjie Fu ◽  
Dandan Pei ◽  
Cui Huang ◽  
Yinchen Liu ◽  
Xijin Du ◽  
...  

2009 ◽  
Vol 75 (22) ◽  
pp. 7037-7043 ◽  
Author(s):  
Min Zhu ◽  
Dragana Ajdić ◽  
Yuan Liu ◽  
David Lynch ◽  
Justin Merritt ◽  
...  

ABSTRACT Dextran-dependent aggregation (DDAG) of Streptococcus mutans is an in vitro phenomenon that is believed to represent a property of the organism that is beneficial for sucrose-dependent biofilm development. GbpC, a cell surface glucan-binding protein, is responsible for DDAG in S. mutans when cultured under defined stressful conditions. Recent reports have described a putative transcriptional regulator gene, irvA, located just upstream of gbpC, that is normally repressed by the product of an adjacent gene, irvR. When repression of irvA is relieved, there is a resulting increase in the expression of GbpC and decreases in competence and synthesis of the antibiotic mutacin I. This study examined the role of irvA in DDAG and biofilm formation by engineering strains that overexpressed irvA (IrvA+) on an extrachromosomal plasmid. The IrvA+ strain displayed large aggregation particles that did not require stressful growth conditions. A novel finding was that overexpression of irvA in a gbpC mutant background retained a measure of DDAG, albeit very small aggregation particles. Biofilms formed by the IrvA+ strain in the parental background possessed larger-than-normal microcolonies. In a gbpC mutant background, the overexpression of irvA reversed the fragile biofilm phenotype normally associated with loss of GbpC. Real-time PCR and Northern blot analyses found that expression of gbpC did not change significantly in the IrvA+ strain but expression of spaP, encoding the major surface adhesin P1, increased significantly. Inactivation of spaP eliminated the small-particle DDAG. The results suggest that IrvA promotes DDAG not only by GbpC, but also via an increase in P1.


2007 ◽  
Vol 56 (11) ◽  
pp. 1528-1535 ◽  
Author(s):  
Moshe Shemesh ◽  
Avshalom Tam ◽  
Doron Steinberg

Streptococcus mutans is known as a primary pathogen of dental caries, one of the most common human infectious diseases. Exopolysaccharide synthesis, adherence to tooth surface and biofilm formation are important physiological and virulence factors of S. mutans. In vitro comparative gene expression analysis was carried out to differentiate 10 selected genes known to be mostly involved in S. mutans biofilm formation by comparing the expression under biofilm and planktonic environments. Real-time RT-PCR analyses indicated that all of the genes tested were upregulated in the biofilm compared to cells grown in planktonic conditions. The influence of simple dietary carbohydrates on gene expression in S. mutans biofilm was tested also. Among the tested genes, in the biofilm phase, the greatest induction was observed for gtf and ftf, which are genes encoding the extracellular polysaccharide-producing enzymes. Biofilm formation was accompanied by a 22-fold induction in the abundance of mRNA encoding glucosyltransferase B (GTFB) and a 14.8 -fold increase in mRNA encoding GTFC. Levels of mRNA encoding fructosyltransferase were induced approximately 11.8-fold in biofilm-derived cells. Another notable finding of this study suggests that glucose affects the expression of S. mutans GS5 biofilm genes. In spite of a significant upregulation in biofilm-associated gene expression in the presence of sucrose, the presence of glucose with sucrose reduced expression of most tested genes. Differential analysis of the transcripts from S. mutans, grown in media with various nutrient contents, revealed significant shifts in the expression of the genes involved in biofilm formation. The results presented here provide new insights at the molecular level regarding gene expression in this bacterium when grown under biofilm conditions, allowing a better understanding of the mechanism of biofilm formation by S. mutans.


Sign in / Sign up

Export Citation Format

Share Document