scholarly journals Rapeseed Post-Frying Oil from Fish Fillets as a Carbon Source in Microbial Oil Synthesis

Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 68
Author(s):  
Agata Fabiszewska ◽  
Katarzyna Wierzchowska ◽  
Agnieszka Górska ◽  
Bartłomiej Zieniuk

Microbial oils, also called single-cell oils, are lipids synthesized by microorganisms exceeding 20% of the dry weight of the cell. The aim of this work was to investigate the possibility of applying a rapeseed post-frying oil from fish fillets as a carbon source in growth medium for Yarrowia lipolytica oleaginous yeast species in order to synthesize a microbial oil. The key contribution of this work is that the solution provides a sustainable method for valorization of post-frying waste oil. Shaken batch cultures were provided and the influence of triacylglyceride hydrolysis on yeast growth was evaluated. In conclusion, post-frying rapeseed oil seems to be an easily utilizable carbon source by yeast. Regardless of the method of lipid substrate pretreatment, the yeast strain preferentially accumulated oleic acid (C18: 1) from 52.07% to 66.62% and linoleic acid (C18: 2) from 12.98% to 24.10%. To the best of our knowledge, this is the first report of using the oxygen nanobubbles as an unconventional method of aerating the culture medium containing lipid carbon sources. The use of water oxygenated with nano-sized bubbles to prepare culture media resulted in obtaining a higher yield of biomass compared to the biomass yield in distilled water-based medium.

Author(s):  
M O Oyewale

The mycelial dry weight and dinitrosalicylic acid (D.N.S.A.) method was used to determine growth and amylase production by Aspergillus flavus grown on different carbon sources. Growth of the fungus was determined at 24 h intervals over a period of six days by the dry mycelial weight methods, while the amylase activity in the culture filtrates of A. flavus was determined by the D.N.S.A method. A total of 45 samples were prepared to determine growth and amylase activity of Aspergillus flavus grown on different carbon sources. The concentration of the various carbon sources ranges between 0.4 to 2% W/V. Duncan’s multiple range test was used to determine the level of significance of the different carbon sources for effective growth and amylase production by Aspergillus flavus. Aspergillus flavus demonstrated the capability to produce significant growth and amylase activities in the medium containing soluble starch, sorghum and cassava peel as sole carbon source. The amount of mycelial dry weight produced from soluble starch, sorghum and cassava peel is significantly higher than those produced from other carbon sources. The data revealed that there is a correlation between growth and amylase production by Aspergillus flavus. The available data from this study showed that soluble starch is the best carbon source for optimum growth and amylase production by A flavus while sorghum and cassava peel are close substitute for optimum growth and amylase production by Aspergillus flavus. Keywords: Growth, amylase activity and Aspergillus flavus


1969 ◽  
Vol 15 (5) ◽  
pp. 389-398 ◽  
Author(s):  
K. Budd

The assimilation of 14C-bicarbonate under controlled conditions was examined in midlog-phase mycelium grown on dextrose as sole carbon source. Sustained assimilation depended on the presence of exogenous nitrogen and carbon sources. When these were provided, assimilation rates of 20–30 μmoles/hour per 100 mg dry weight were maintained for at least 4 hours. After the second hour, almost all of the assimilated bicarbonate-C entered the 80% ethanol-insoluble fraction. Amino acids, especially aspartic and glutamic, were the main destination of assimilated bicarbonate-C; nucleic acids and acids of the tricarboxylic acid cycle accounted for smaller amounts of this carbon. The apparent Km for overall assimilation was 1.4 – 2.2 × 10−4 M with respect to bicarbonate.Assimilation was inhibited by inhibitors of protein synthesis, especially actidione and p-fluorophenylalanine. Evidence was obtained for regulation of assimilation by its end products, and also by the carbon source on which the mycelium was grown. It is concluded that assimilation of bicarbonate or CO2 has an anaplerotic function during protein synthesis in this organism.


2015 ◽  
Vol 1088 ◽  
pp. 587-590
Author(s):  
Yan Ping Zhang

The influence of different carbon sources such as glucose, sodium acetate, sodium propionate and ethanol for polyhydroxyalkanoates (PHA) storage were studied in details. It was shown that both the cell content and composition of PHA synthesized by microorganisms in activated sludge were different when different carbon sources were used. PHB (polyhydroxybutyrate) was the main PHA if sodium acetate was used as carbon source, while PHV (polydroxyvalerate) become the main PHA when sodium propionate was used. Sodium acetate and sodium propionate as carbon source had higher PHA production, which reached to 40.89% and 40.96% sludge dry weight, respectively . When ethanol used as carbon source, PHA content was 25.69% sludge dry weight. The minimal PHA storage was 20.14% sludge dry weight when glucose was used.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 795 ◽  
Author(s):  
Helberth Júnnior Santos Lopes ◽  
Nemailla Bonturi ◽  
Everson Alves Miranda

Microbial oil is a potential substitute for vegetable oils in the biodiesel industry. Efforts to obtain cheap carbon sources for the cultivation of lipid-producing microorganisms comprise an active research area. This work aimed to extract the hemicellulose fraction from Eucalyptus uograndis and to use its hydrolysate as a carbon source for Rhodotorula toruloides (an oleaginous yeast) cultivation for microbial oil production. Hemicellulose hydrothermal extractions were performed at different temperatures, times, and ratios of solid to liquid (S/L). Temperature and time showed a stronger effect on the solubilization of hemicellulose. Hemicellulose extraction at 155 °C, 195 min, and an S/L ratio of 1/2 resulted in a hydrolysate with a xylose content of 37.0 g/l. R. toruloides cultivation in this hydrolysate showed that initial pH had a strong influence on cell growth. At an initial pH of 6.2, cells grew to 6.0 g/l of biomass with a lipid content of 50%. Therefore, we believe that E. urograndis hemicellulose hydrolysate could be a potential substrate for R. toruloides for lipid production based on the biorefinery concept.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4871
Author(s):  
Héctor M. Alvarez ◽  
Martín A. Hernández ◽  
Mariana P. Lanfranconi ◽  
Roxana A. Silva ◽  
María S. Villalba

Bacteria belonging to the Rhodococcus genus are frequent components of microbial communities in diverse natural environments. Some rhodococcal species exhibit the outstanding ability to produce significant amounts of triacylglycerols (TAG) (>20% of cellular dry weight) in the presence of an excess of the carbon source and limitation of the nitrogen source. For this reason, they can be considered as oleaginous microorganisms. As occurs as well in eukaryotic single-cell oil (SCO) producers, these bacteria possess specific physiological properties and molecular mechanisms that differentiate them from other microorganisms unable to synthesize TAG. In this review, we summarized several of the well-characterized molecular mechanisms that enable oleaginous rhodococci to produce significant amounts of SCO. Furthermore, we highlighted the ability of these microorganisms to degrade a wide range of carbon sources coupled to lipogenesis. The qualitative and quantitative oil production by rhodococci from diverse industrial wastes has also been included. Finally, we summarized the genetic and metabolic approaches applied to oleaginous rhodococci to improve SCO production. This review provides a comprehensive and integrating vision on the potential of oleaginous rhodococci to be considered as microbial biofactories for microbial oil production.


2006 ◽  
Vol 53 (6) ◽  
pp. 175-180 ◽  
Author(s):  
S. Yan ◽  
R.D. Tyagi ◽  
R.Y. Surampalli

Activated sludge from different full-scale wastewater treatment plants (municipal, pulp and paper industry, starch manufacturing and cheese manufacturing wastewaters) was used as a source of microorganisms to produce biodegradable plastics in shake flask experiments. Acetate, glucose and different wastewaters were used as carbon sources. Pulp and paper wastewater sludge was found to accumulate maximum concentration (43% of dry weight of suspended solids) of polyhydroxy alkanoates (PHA) with acetate as carbon source. Among the different wastewaters tested as a source of carbon, pulp and paper industry and starch industry wastewaters were found to be the best source of carbon while employing pulp and paper activated sludge for maximum accumulation of PHA. High concentration of volatile fatty acids in these wastewaters was the probable reason.


1965 ◽  
Vol 11 (4) ◽  
pp. 625-628 ◽  
Author(s):  
H. G. Osman ◽  
M. S. Chenouda

The major amount of riboflavin is formed when the mycelia reach a mature stage and the major carbon source is almost exhausted. While the riboflavin is being synthesized in larger quantities, the mycelial dry weight, the total nitrogen, and total lipid content decrease. The mobilized cell reserves may be those components which call upon the biosynthesis of the major amount of the vitamin. At the stage of growth where glucose is almost completely utilized an increase in the excretion of pyruvic and lactic acids from the mycelia into the culture medium occurs. This may partly explain the increase in the acidity of the culture medium at that stage.


2021 ◽  
Author(s):  
Manuella Silverio ◽  
Rosane Piccoli ◽  
João Reis ◽  
José Gregorio Gomez ◽  
Antonio Baptista

Abstract The Brazilian ethanol industry is one of the most important in the global market, however these important industrial activities have been generating significant amounts of vinasse and its management has become costly for distilleries. In this study, the aim was to evaluate concentrated and in natura vinasse as basal culture media for biotechnological processes. Different bacteria and processes were assessed: L-threonine production by E. coli THR14, with glucose as carbon source; PHB production by halophilic strain Halomonas sp. HG03, with sucrose as carbon source; and PHB biosynthesis by R. eutropha L359PCJ, which used glycerol from vinasse as carbon source. Strains were evaluated firstly in shake flasks cultivations using vinasse-based media. E. coli THR14 had no statistical difference for biomass and L-threonine concentrations among control and vinasse-based treatments (up to 50% v v-1 of in natura vinasse). Halomonas sp. HG03 and R. eutropha L359PCJ were cultivated in mineral media diluted by in natura (50% and 75% v v-1) and concentrated (50% and 75% v v-1) vinasses. Higher vinasse concentrations resulted in higher cellular growth rather than PHB accumulation for both bacteria. In vinasse-based treatments, Halomonas sp. HG03 had PHB content between 19.6 – 75.2% and R. eutropha L359PCJ, 48.4 – 68.5%. 50% (v v-1) of concentrated vinasse was the most attractive condition for PHB production by both bacteria. Further experiments in CSTR bioreactors used this nutritional condition and R. eutropha L359PCJ had PHB content of 66.3%, concentrations of residual cell dry weight (rCDW) = 9.4 g L-1 and PHB = 18.6 g L-1, with YX/S = 0.16 g gGLYCEROL-1, YP/S = 0.32 g gGLYCEROL-1 and 0.25 gPHB Lh-1. Halomonas sp. HG03 had PHB content of 45.7%, rCDW = 9.8 g L-1, PHB = 8.3 g L-1 and YX/S = 0.18 g gSUCROSE-1, YP/S = 0.16 g gSUCROSE-1 and 0.12 gPHB Lh-1. Finally, cost reductions of PHB production by R. eutropha L359PCJ with concentrated vinasse-based medium were evaluated in silico by using SuperPro Designer. As a partial source of glycerol and other nutrients for PHB production by R. eutropha L359PCJ, vinasse reduced overall production costs by 13%. Simulated processes that used concentrated vinasse-based media combined with improvements of PHB productivity and higher cellular densities had production costs between US$ 3.9 – 7.5/kgPHB and 2.6 – 7.3 years of payback time.


Author(s):  
Carolina Bilia Chimello de Paula ◽  
Fabrício Coutinho de Paula-Elias ◽  
Marcela Nogueira Rodrigues ◽  
Luciana Fontes Coelho ◽  
Nayra Morgana Lima de Oliveira ◽  
...  

Polyhydroxyalkanoate (PHA) bioplastic was synthesized by Burkholderia glumae MA13 from carbon sources and industrial byproducts related to sugarcane biorefineries: sucrose, xylose, molasses, vinasse, bagasse hydrolysate, yeast extract, yeast autolysate, and inactivated dry yeast besides different inorganic nitrogen sources. Sugarcane molasses free of pre-treatment was the best carbon source, even compared to pure sucrose, with intracellular polymer accumulation values of 41.1–46.6% cell dry weight. Whereas, xylose and bagasse hydrolysate were poor inducers of microbial growth and polymer synthesis, the addition of 25% (v/v) sugarcane vinasse to the culture media containing molasses was not deleterious and resulted in a statistically similar maximum polymer content of 44.8% and a maximum PHA yield of 0.18 g/g, at 34°C and initial pH of 6.5, which is economic and ecologically interesting to save water required for the industrial processes and especially to offer a fermentative recycling for this final byproduct from bioethanol industry, as an alternative to its inappropriate disposal in water bodies and soil contamination. Ammonium sulfate was better even than tested organic nitrogen sources to trigger the PHA synthesis with polymer content ranging from 29.7 to 44.8%. GC-MS analysis showed a biopolymer constituted mainly of poly(3-hydroxybutyrate) although low fractions of 3-hydroxyvalerate monomer were achieved, which were not higher than 1.5 mol% free of copolymer precursors. B. glumae MA13 has been demonstrated to be adapted to synthesize bioplastics from different sugarcane feedstocks and corroborates to support a biorefinery concept with value-added green chemicals for the sugarcane productive chain with additional ecologic benefits into a sustainable model.


2021 ◽  
Author(s):  
Seid Mohammed Ebu ◽  
Lopamudra Ray

Abstract Nowadays the conventional plastic wastes are very challenging to environments and its production cost also creates an economic crisis due to petrochemical-based plastic. In order to solve this problem, the current studies were aimed at screening and characterizing these PHA producing isolates and evaluating the suitability of some carbon source for newly screened PHA producing isolates. Some carbon sources such as D-fructose, glucose, molasses, D-ribose and sucrose were evaluated for PHA production. Data were analyzed using SPSS version 20. The 16SrRNA gene sequence of these isolates was performed. This newly isolated taxa was related to Bacillus species. It was designed as Bacillus sp. LPPI-18 and affiliated Bacillus cereus ATCC 14577T (AE01687) (99.10%). Paenibacillus sp. 172 (AF273740.1) was used as an out-group. Bacillus sp. LPPI-18 is a gram-positive, rod-shaped, endospore former, and citrate test positive. This isolate showed positive for amylase, catalase, pectinase, and protease test. They produced intracellular PHA granules when this isolate was stained with Sudan Black B (SBB) and Nile Blue A (NBA) preliminary and specific staining dyes, respectively. Both Temperature and pH used to affect PHA productivity. Bacteria are able to reserve PHA in the form of granules during stress conditions. This isolate produces only when supplied with carbon sources. More PHA contents (PCs) were obtained from glucose, molasses, and D-fructose. In this regard, the maximum mean value of PC was obtained from glucose (40.55±0.7%) and the minimum was obtained from D-Ribose (12.4±1.4%). Great variations (p≤0.05) of PCs were observed among glucose & sucrose, molasses & sucrose and D-fructose & sucrose carbon sources for PHA productivity (PP) of Cell Dry Weight (CDW) g/L. After extraction, PHA film was produced for this typical isolate using glucose as a sole carbon source. Fourier transform infrared spectrum was performed for this isolate and showed the feature of polyester at 1719.64 to 1721.16 wavelength for these extracted samples. The peak of fingerprinting (band of carboxylic acid group) at this wave-length is a characteristic feature of PHB and corresponds to the ester functional group (C=O).


Sign in / Sign up

Export Citation Format

Share Document