scholarly journals Nitrogen Effect on Growth-Related Parameters and Evaluation of Portulaca oleracea as a Phytoremediation Species in a Cr(VI)-Spiked Soil

Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 192
Author(s):  
Georgios Thalassinos ◽  
Elina Nastou ◽  
Spyridon A. Petropoulos ◽  
Vasileios Antoniadis

In a pot experiment, we assessed the potential of purslane (Portulaca oleracea) as a phytoremediation species in Cr(VI)-contaminated soils. We focused on the evaluation of phytotoxic Cr(VI) effects at concentrations reaching 150 mg Cr(VI) kg−1 and the possible stress amelioration effect of nitrogen on Cr(VI)-stressed plants. Treatments were T-0 (control), T-1 (25 mg Cr(VI) kg−1), T-2 = 50 mg kg−1, T-3 = 100 mg kg−1, and T-4 = 150 mg kg−1. We measured Cr(VI) concentration in aerial and root tissues, a series of parameters related to photosynthesis and plant growth, phosphorus aerial plant tissue content, and we also calculated indices (ratios) related to leaf growth and above ground tissue water content. Cr(VI) almost exclusively was found in root tissues; all physiological and growth parameters studied were severely affected and plants selectively accumulated phosphorus in aerial plant tissues with increasing Cr(VI) soil concentrations. On the other hand, N amendment resulted in improved plant features in some of the measured parameters: chlorophyll index was improved with added N at T-2, plant height was significantly higher at T-0, T-1, and T-2, and aerial dry weight and leaf area was higher at T-0; these effects indicate that added N did increase P. oleracea potential to ameliorate Cr(VI) toxic effects. We conclude that purslane showed a potential as a possible species to be successfully introduced to Cr(VI)-laden soils, but more research is certainly necessary.

2016 ◽  
Vol 62 (2) ◽  
pp. 72-79 ◽  
Author(s):  
Beáta Piršelová ◽  
Roman Kuna ◽  
Peter Lukáč ◽  
Michaela Havrlentová

Abstract The influence of different concentrations of cadmium (Cd) ions (50 and 100 mg/kg soil) on growth, photosynthetic pigment content, Cd, and iron accumulation in faba bean (Vicia faba L. cv. Aštar) was studied under laboratory conditions. No significant changes were observed in the growth parameters of shoots (length, fresh, and dry weight). Both tested Cd doses resulted in decrease in root fresh weight by 31.7% and 28.68% and in dry weight by 32.2% and 33.33%, respectively. Increased accumulation of Cd was observed in roots (125- and 173-fold higher than in control) and shoots (125- and 150-fold higher than in control) as a result of applied doses of Cd. Increased accumulation of iron was detected in roots (1.45- and 1.69-fold higher than in control). Decrease in the content of chlorophyll a (by 25.52 and 24.83%, respectively) and chlorophyll b (by 6.90%) after application of Cd 100 as well as decrease in carotenoids (by 40.39 and 38.36%, respectively) was detected. Weak translocation of Cd from roots to shoots pointed to low phytoremediation potential of the tested bean variety in contaminated soil. However, the high tolerance of this cultivar, its relative fast growth, as well as priority of Cd accumulation in roots presume this plant species for phytostabilisation and revegetation of the Cd-contaminated soils.


Genetika ◽  
2016 ◽  
Vol 48 (1) ◽  
pp. 233-248
Author(s):  
R. El-Bakatoushi ◽  
A. Elframawy

Plant growth and the expression of two transporter genes; PoHKT1 and PoVHA transcripts in root and shoot tissues were studied under salt stress of three Portulaca oleracea s.l. taxa. The study showed no significant differences in ratios between root lengths in saline and non-saline treatments of the three taxa, which was correlated with a clear down-regulation of the PoHKT1 transcripts in the root after 150mM NaCl. All measured growth parameters except root length increased in P. oleraceae, decreased in P. granulatostellulata and remain unchanged after 100mM NaCl in P. nitida compared to control under saline conditions. The result was consistent with the type of taxon which had significant effect on the shoot length, number of leaves and dry weight (P< 0.05). All measured growth parameters except root length showed a significant negative correlation with the shoot fold change of PoHKT1 transcripts (r = -0.607, -0.693 and -0.657 respectively). The regulation of PoVHA in root and shoot tissues in the three taxa are significantly different. Under salt stress, both decreased uptake of Na+ into the cytosol by decreasing the expression of PoHKT1 and increased vascular compartmentalization ability of Na+ by inducing the expression of PoVHA seem to work more efficiently in P. oleraceae and P. nitida than in P. granulato-stellulata.


Author(s):  
Omayma N. Mohammed ◽  
Mohanad J. M-Ridha

Phytoremediation is a promising technology for the cleanup of petroleum contaminated soil. Total petroleum hydrocarbon TPH are elements of difficult management and they can cause carcinogenesis and toxicity in human. Different techniques have been used for the remediation of contaminated soils, but the phytoremediation is proposed as possible alternative, convenient and environmentally friendly than traditional physicochemical techniques. In this study two systems adopted; free surface flow (FSF) and sub-surface flow (SSF) to select which system is more suitable for plant to be applied in future study of phytotoxicity test. The preliminary test for two types of plants phragmites communis (The scientific name is phragmites australis) and Helianthus annuus was conducted in a greenhouse for 14 days. The diesel concentrations used in this experiment were (0,1,2,3,5)% Vdiesel/Vwater for both systems. Through this period the growth parameters measured; were wet weight, dry weight, stem length, root length and observation the withered for the two plants. From this work, SSF better than FSF and Phragmites communis is better in phytoremediation than Helianthus annuus.


2019 ◽  
Vol 38 (4) ◽  
Author(s):  
Subhrajyoti Mishra ◽  
Dilip Kumar Dash

An experiment was carried out to identify the effect of season on various leaf parameters of Kuliana lime during 2016-17 at Horticultural Research Station, Department of Fruit Science and Horticulture Technology, O.U.A.T., Bhubaneswar. The rainy season recorded the maximum leaf fresh weight (0.39 g), leaf dry weight (0.18 g), leaf area (16.19 cm2) whereas spring season have greater production of chlorophyll-a (1.19 mg per g of FW), chlorophyll-b (0.61 mg per g of FW) and total chlorophyll (1.81 mg per g of FW). Rainy season flush showed the maximum leaf area, leaf fresh weight and dry weight, due to the better availability of soil moisture and high relative humidity of atmosphere resulting in low transpiration losses which perhaps favoured the better leaf growth. Though spring season have the most favourable climatic condition but carbohydrate in spring flush leaves were might utilized mainly to support reproductive growth hence there was reduction in the dry weight of leaves.


2020 ◽  
Vol 13 (2) ◽  
pp. 83-92 ◽  
Author(s):  
A. Adam

SummaryEnhancement of the resistance level in plants by rhizobacteria has been proven in several pathosystems. This study investigated the ability of four rhizobacteria strains (Pseudomonas putida BTP1 and Bacillus subtilis Bs2500, Bs2504 and Bs2508) to promote the growth in three barley genotypes and protect them against Cochliobolus sativus. Our results demonstrated that all tested rhizobacteria strains had a protective effect on barley genotypes Arabi Abiad, Banteng and WI2291. However, P. putida BTP1 and B. subtilis Bs2508 strains were the most effective as they reduced disease incidence by 53 and 38% (mean effect), respectively. On the other hand, there were significant differences among the rhizobacteria-treated genotypes on plant growth parameters, such as wet weight, dry weight, plant height and number of leaves. Pseudomonas putida BTP1 strain was the most effective as it significantly increased plant growth by 15-32%. In addition, the susceptible genotypes Arabi Abiad and WI2291 were the most responsive to rhizobacteria. This means that these genotypes have a high potential for increase of their resistance against the pathogen and enhancement of plant growth after the application of rhizobacteria. Consequently, barley seed treatment with the tested rhizobacteria could be considered as an effective biocontrol method against C. sativus.


Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 182
Author(s):  
Ruchi Bansal ◽  
Swati Priya ◽  
Harsh Kumar Dikshit ◽  
Sherry Rachel Jacob ◽  
Mahesh Rao ◽  
...  

Cadmium (Cd) is a hazardous heavy metal, toxic to our ecosystem even at low concentrations. Cd stress negatively affects plant growth and development by triggering oxidative stress. Limited information is available on the role of iron (Fe) in ameliorating Cd stress tolerance in legumes. This study assessed the effect of Cd stress in two lentil (Lens culinaris Medik.) varieties differing in seed Fe concentration (L4717 (Fe-biofortified) and JL3) under controlled conditions. Six biochemical traits, five growth parameters, and Cd uptake were recorded at the seedling stage (21 days after sowing) in the studied genotypes grown under controlled conditions at two levels (100 μM and 200 μM) of cadmium chloride (CdCl2). The studied traits revealed significant genotype, treatment, and genotype × treatment interactions. Cd-induced oxidative damage led to the accumulation of hydrogen peroxide (H2O2) and malondialdehyde in both genotypes. JL3 accumulated 77.1% more H2O2 and 75% more lipid peroxidation products than L4717 at the high Cd level. Antioxidant enzyme activities increased in response to Cd stress, with significant genotype, treatment, and genotype × treatment interactions (p < 0.01). L4717 had remarkably higher catalase (40.5%), peroxidase (43.9%), superoxide dismutase (31.7%), and glutathione reductase (47.3%) activities than JL3 under high Cd conditions. In addition, L4717 sustained better growth in terms of fresh weight and dry weight than JL3 under stress. JL3 exhibited high Cd uptake (14.87 mg g−1 fresh weight) compared to L4717 (7.32 mg g−1 fresh weight). The study concluded that the Fe-biofortified lentil genotype L4717 exhibited Cd tolerance by inciting an efficient antioxidative response to Cd toxicity. Further studies are required to elucidate the possibility of seed Fe content as a surrogacy trait for Cd tolerance.


2021 ◽  
Vol 13 (9) ◽  
pp. 5074
Author(s):  
Urooj Kanwal ◽  
Muhammad Ibrahim ◽  
Farhat Abbas ◽  
Muhammad Yamin ◽  
Fariha Jabeen ◽  
...  

Phytoremediation is a cost-effective and environmentally friendly approach that can be used for the remediation of metals in polluted soil. This study used a hedge plant–calico (Alternanthera bettzickiana (Regel) G. Nicholson) to determine the role of citric acid in lead (Pb) phytoremediation by exposing it to different concentrations of Pb (0, 200, 500, and 1000 mg kg−1) as well as in a combination with citric acid concentration (0, 250, 500 µM). The analysis of variance was applied on results for significant effects of the independent variables on the dependent variables using SPSS (ver10). According to the results, maximum Pb concentration was measured in the upper parts of the plant. An increase in dry weight biomass, plant growth parameters, and photosynthetic contents was observed with the increase of Pb application (200 mg kg−1) in soil while a reduced growth was experienced at higher Pb concentration (1000 mg kg−1). The antioxidant enzymatic activities like superoxide dismutase (SOD) and peroxidase (POD) were enhanced under lower Pb concentration (200, 500 mg kg−1), whereas the reduction occurred at greater metal concentration Pb (1000 mg kg−1). There was a usual reduction in electrolyte leakage (EL) at lower Pb concentration (200, 500 mg kg−1), whereas EL increased at maximum Pb concentration (1000 mg kg−1). We concluded that this hedge plant, A. Bettzickiana, has the greater ability to remediate polluted soils aided with citric acid application.


Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 135-148
Author(s):  
Mohammed El Midaoui ◽  
Ahmed Talouizte ◽  
Benbella Mohamed ◽  
Serieys Hervé ◽  
Ait Houssa Abdelhadi ◽  
...  

SUMMARYAn experiment has been carried out in order to study the behaviour under mineral deficiency of three sunflower genotypes, a population variety (Oro 9) and two hybrids (Mirasol and Albena). Sunflower seedlings were submitted to five treatments: N deficiency (N0), P deficiency (P0), K deficiency (K0), N and K deficiency (N0K0) and a control. Plants were harvested when they reached 3-4 true pairs of leaves. Growth parameters measured (height, total leaf area, root length, root and shoot dry mater) were all significantly reduced by mineral deficiency. Leaf area was most reduced by N0 (-61%) and P0 (-56%). Total dry matter was most affected by N0 (-63%) and by N0K0 (-66%). Genotype comparisons showed that Oro 9 had the highest shoot dry matter while Albena had the lowest root dry matter. Effect of mineral deficiency on content and partitioning of N, P, K, Ca and Na was significant and varied according to treatments and among plant parts. Shoot dry weight was significantly correlated with root N content (r2=0.81) and root K content (r2=-0.61) for N0 and K0.


Author(s):  
Mahmoud Ahmed Touny El-Dabaa ◽  
Hassan Abd-El-Khair

Abstract Background Orobanche crenata is an obligate root parasite belonging to Orbanchaceae. Broomrape causes great damage to the faba bean. Several attempts were applied for controlling parasitic weeds. So, the aim of this work is to study the application of Trichoderma spp. as well as three rhizobacteria species in comparison to herbicidal effect of Glyphosate (Glialka 48% WSC) for controlling broomrape infesting faba bean (Vicia faba). Materials and methods Three pot experiments were carried out in the greenhouse of the National Research Centre, Dokki, Giza, Egypt during two successive winter seasons. Trichoderma inocula were adjusted to 3.6 × 108 propagules/ml and the bacterium inocula were adjusted at 107–109 colony-forming unit (CFU)/ml. All treatments were applied, before 1 week of sowing, at rate of 50 ml per pot in experiments I and II, while 100 ml per pot in experiment III. Results Trichoderma spp. (T. harzianum, T. viride and T. vierns) as well as three rhizobacteria species (Pseudomonas fluorescens, Bacillus subtilis and Bacillus pumilus) enhanced the growth parameters in faba bean plants, i.e. shoot length, shoot fresh weight, shoot dry weight and leaf number in the first experiment when applied without O. crenata infection. In the second experiment, all bio-control could protect plants against O. crenata infection, where it had better juvenile number reduction, than glyphosate after 2 months of application. Both B. subtilis and B. pumilus had the highest reduction to juvenile fresh weight, while their effect was equal to herbicide for juvenile dry weight, respectively. The bio-control agents had high effects until the 4th month, but it was less than that of the herbicide. In experiment III, the bio-control agents could highly reduce the juvenile parameters after 2 months, as well as juvenile fresh weight and juvenile dry weight after 4 months, than the herbicide, respectively. The bio-control agents were effective until 6 months, but less than the herbicide effect. All bio-control treatments highly increased the plant growth parameters, than the herbicide. Conclusion The application of Trichoderma spp. as well as rhizobacteria species could play an important role in controlling broomrape in faba bean as a natural bioherbicide.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1610
Author(s):  
Branka Vinterhalter ◽  
Nevena Banjac ◽  
Dragan Vinterhalter ◽  
Dijana Krstić-Milošević

The hairy root clones of Gentiana dinarica cl-B, cl-D, cl-3, and cl-14 were cultivated in parallel in diverse simple bioreactors, including temporary immersion systems RITA® (TIS RITA®), bubble column bioreactors (BCB), and Erlenmeyer flasks (EF), and evaluated for biomass production and xanthone content. The obtained results showed that TIS RITA® and BCB containing ½ MS medium with 4% sucrose provided equally good growth conditions in which the majority of the clones displayed the higher percentage of dry matter (DM%), and xanthones norswertianin-1-O-primeveroside (nor-1-O-prim) and norswertianin production than those cultivated in EF. Thin and well branched hairy root clone cl-B grown in BCB for 7 weeks was superior regarding all growth parameters tested, including growth index (19.97), dry weight (2.88 g), and DM% (25.70%) compared to all other clones. Cl-B cultured in TIS RITA® contained the highest amount of nor-1-O-prim (56.82 mg per vessel). In BCB with constant aeration, cl-B accumulated the highest norswertianin content reaching 18.08 mg/vessel. The optimized conditions for cultivation of selected G. dinarica hairy root clones in highly aerated TIS RITA® and BCB systems contribute to the development of bioreactor technology designed for the large scale commercial production of xanthones nor-1-O-prim and norswertianin.


Sign in / Sign up

Export Citation Format

Share Document