scholarly journals The Circadian Protein PER1 Modulates the Cellular Response to Anticancer Treatments

2021 ◽  
Vol 22 (6) ◽  
pp. 2974
Author(s):  
Marina Maria Bellet ◽  
Claudia Stincardini ◽  
Claudio Costantini ◽  
Marco Gargaro ◽  
Stefania Pieroni ◽  
...  

The circadian clock driven by the daily light–dark and temperature cycles of the environment regulates fundamental physiological processes and perturbations of these sophisticated mechanisms may result in pathological conditions, including cancer. While experimental evidence is building up to unravel the link between circadian rhythms and tumorigenesis, it is becoming increasingly apparent that the response to antitumor agents is similarly dependent on the circadian clock, given the dependence of each drug on the circadian regulation of cell cycle, DNA repair and apoptosis. However, the molecular mechanisms that link the circadian machinery to the action of anticancer treatments is still poorly understood, thus limiting the application of circadian rhythms-driven pharmacological therapy, or chronotherapy, in the clinical practice. Herein, we demonstrate the circadian protein period 1 (PER1) and the tumor suppressor p53 negatively cross-regulate each other’s expression and activity to modulate the sensitivity of cancer cells to anticancer treatments. Specifically, PER1 physically interacts with p53 to reduce its stability and impair its transcriptional activity, while p53 represses the transcription of PER1. Functionally, we could show that PER1 reduced the sensitivity of cancer cells to drug-induced apoptosis, both in vitro and in vivo in NOD scid gamma (NSG) mice xenotransplanted with a lung cancer cell line. Therefore, our results emphasize the importance of understanding the relationship between the circadian clock and tumor regulatory proteins as the basis for the future development of cancer chronotherapy.

2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.


1991 ◽  
Vol 11 (1) ◽  
pp. 401-411
Author(s):  
S Cuthill ◽  
A Wilhelmsson ◽  
L Poellinger

To reconstitute the molecular mechanisms underlying the cellular response to soluble receptor ligands, we have exploited a cell-free system that exhibits signal- (dioxin-)induced activation of the latent cytosolic dioxin receptor to an active DNA-binding species. The DNA-binding properties of the in vitro-activated form were qualitatively indistinguishable from those of in vivo-activated nuclear receptor extracted from dioxin-treated cells. In vitro activation of the receptor by dioxin was dose dependent and was mimicked by other dioxin receptor ligands in a manner that followed the rank order of their relative affinities for the receptor in vitro and their relative potencies to induce target gene transcription in vivo. Thus, in addition to triggering the initial release of inhibition of DNA binding and presumably allowing nuclear translocation, the ligand appears to play a crucial role in the direct control of the level of functional activity of a given ligand-receptor complex.


2015 ◽  
Vol 37 (1) ◽  
pp. 23-29
Author(s):  
A Sen ◽  
K K Goswami ◽  
A Mallick ◽  
A K Saxena ◽  
U Sanyal ◽  
...  

Aim: To evaluate potential of Naphthal-NU, Napro-NU and 5-Nitro-naphthal-NU, 2-chloroethylnitrosourea compounds with substituted naphthalimide in the pre-clinical studies. Materials and Methods: In vitro cytotoxicity of three nitrosoureas was determined in human and mouse tumor cell lines by MTT assays. In vivo anti-tumor potential was evaluated in Sarcoma-180 (S-180) and Ehrlich’s carcinoma (EC) solid tumors. Apoptosis in S-180 cells was analyzed by using Annexin V-Propidium Iodide (PI). Histological analysis of liver and kidney was performed at optimum dose (50 mg/kg). Expression status of CD4+, CD8+ and CD25+ cells in treated mouse were also examined. Results: Significant tumor growth retardation by the compounds was noted in early and advanced disease groups, as the life span of drug treated mice increased considerably. Drug induced killing was observed by induction of apoptosis. Naphthal-NU and 5-Nitro-naphthal-NU were effective to normalize the tumor induced structural abnormalities of liver and kidney. The compounds have no immunotoxic effect on CD4+ and CD8+ T cells and down regulate CD4+CD25+ regulatory T cells. Conclusion: Overall data holds promise for the antitumor activity with lower toxicity of the compounds that can be utilized for the treatment of human malignant tumors.


2015 ◽  
Vol 210 (6) ◽  
pp. 1013-1031 ◽  
Author(s):  
Nikki R. Paul ◽  
Jennifer L. Allen ◽  
Anna Chapman ◽  
Maria Morlan-Mairal ◽  
Egor Zindy ◽  
...  

Invasive migration in 3D extracellular matrix (ECM) is crucial to cancer metastasis, yet little is known of the molecular mechanisms that drive reorganization of the cytoskeleton as cancer cells disseminate in vivo. 2D Rac-driven lamellipodial migration is well understood, but how these features apply to 3D migration is not clear. We find that lamellipodia-like protrusions and retrograde actin flow are indeed observed in cells moving in 3D ECM. However, Rab-coupling protein (RCP)-driven endocytic recycling of α5β1 integrin enhances invasive migration of cancer cells into fibronectin-rich 3D ECM, driven by RhoA and filopodial spike-based protrusions, not lamellipodia. Furthermore, we show that actin spike protrusions are Arp2/3-independent. Dynamic actin spike assembly in cells invading in vitro and in vivo is regulated by Formin homology-2 domain containing 3 (FHOD3), which is activated by RhoA/ROCK, establishing a novel mechanism through which the RCP–α5β1 pathway reprograms the actin cytoskeleton to promote invasive migration and local invasion in vivo.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Shihua Wu ◽  
Feng Liu ◽  
Liming Xie ◽  
Yaling Peng ◽  
Xiaoyuan Lv ◽  
...  

Understanding the molecular mechanisms underlying gastric cancer progression contributes to the development of novel targeted therapies. In this study, we found that the expression levels of miR-125b were strongly downregulated in gastric cancer and associated with clinical stage and the presence of lymph node metastases. Additionally, miR-125b could independently predict OS and DFS in gastric cancer. We further found that upregulation of miR-125b inhibited the proliferation and metastasis of gastric cancer cells in vitro and in vivo. miR-125b elicits these responses by directly targeting MCL1 (myeloid cell leukemia 1), which results in a marked reduction in MCL1 expression. Transfection of miR-125b sensitizes gastric cancer cells to 5-FU-induced apoptosis. By understanding the function and molecular mechanisms of miR-125b in gastric cancer, we may learn that miR-125b has the therapeutic potential to suppress gastric cancer progression and increase drug sensitivity to gastric cancer.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Xi Zhang ◽  
Guoqing Hou ◽  
Andong Liu ◽  
Hui Xu ◽  
Yang Guan ◽  
...  

Abstract Ovarian cancer remains the most lethal gynecologic malignancy with late detection and acquired chemoresistance. Advanced understanding of the pathophysiology and novel treatment strategies are urgently required. A growing body of proteomic investigations suggest that phosphorylation has a pivotal role in the regulation of ovarian cancer associated signaling pathways. Matrine has been extensively studied for its potent anti-tumor activities. However, its effect on ovarian cancer cells and underlying molecular mechanisms remain unclear. Herein we showed that matrine treatment inhibited the development and progression of ovarian cancer cells by regulating proliferation, apoptosis, autophagy, invasion and angiogenesis. Matrine treatment retarded the cancer associated signaling transduction by decreasing the phosphorylation levels of ERK1/2, MEK1/2, PI3K, Akt, mTOR, FAK, RhoA, VEGFR2, and Tie2 in vitro and in vivo. Moreover, matrine showed excellent antitumor effect on chemoresistant ovarian cancer cells. No obvious toxic side effects were observed in matrine-administrated mice. As the natural agent, matrine has the potential to be the targeting drug against ovarian cancer cells with the advantages of overcoming the chemotherapy resistance and decreasing the toxic side effects.


2021 ◽  
Vol 40 (5) ◽  
pp. 403-412
Author(s):  
Erik A. Larson ◽  
Michael V. Accardi ◽  
Yifei Zhong ◽  
Dominique Paquette ◽  
Simon Authier

A broad spectrum of chemical entities have been associated with drug-induced seizure (DIS), emphasizing the importance of this potential liability across various drug classes (e.g., antidepressants, antipsychotics, antibiotics, and analgesics among others). Despite its importance within drug safety testing, an understanding of the molecular mechanisms associated with DIS is often lacking. The etiology of DIS is understood to be a result of either a deficit in inhibitory (e.g., gamma aminobutyric acid) or an elevated excitatory (e.g., glutamate) signaling, leading to synchronous neuronal depolarization affecting various brain regions and impairing normal neurological functions. How this altered neuronal signaling occurs and how these changes interact with other non-brain receptor driven DIS-associated changes such as metabolic disturbances, electrolyte imbalances, altered drug metabolism, and withdrawal effects are poorly understood. Herein, we discuss important molecular mechanisms identified in DIS for several drugs and/or drug classes. With a better understanding of the molecular mechanisms associated with DIS, in vivo or in vitro models may be applied to characterize and mitigate DIS risk during drug development. Susceptibility stratification for DIS presents species differences in the following order beagle dogs > rodents and cynomolgus monkeys > Göttingen minipigs with a more than 2-fold difference between canines and minipigs, which is important to consider during non-clinical species selection. While clinical signs such as myoclonus, severe muscle jerks, or convulsions are often associated with abnormal epileptiform EEG activity, tremors are most of the time physiological and rarely observed with concurrent epileptiform EEG activity which need to be considered during DIS risk evaluation.


2020 ◽  
Author(s):  
Dan Liu ◽  
Xiyue Xu ◽  
Shuci Liu ◽  
Xuan Zhao ◽  
Anqun Tang ◽  
...  

Abstract Background The prolonged hypersecretion of catecholamine induced by chronic stress may correlate with various steps of malignant progression of cancer and β2-AR overexpressed in certain cancer cells may translate the signals from neuroendocrine system to malignant signals by interacting with oncoproteins such as Her2. Crosstalk of the cell signaling pathways mediated by β2-AR and Her2 may promote a stronger or more sustained biological response. However, the molecular mechanisms underlying cross-communication between β2-AR and Her2 mediated signaling pathways are not fully understood. Methods In this study, the effects of adrenergic signaling on Her2 cleavage were evaluated by various assays, such as western blot, immunofluorescence and immunohistochemistry. In order to reveal the mechanism about Her2 cleavage triggered by β2-AR activation, the molecular and pharmacological means were employed. By using in vitro and in vivo assay, the influences of the crosstalk between β2-AR and Her2 on the bio-behaviors of tumor cells were demonstrated. Results Our data demonstrate that catecholamine stimulation activates the expression and proteolytic activity of ADAM10 by modulating the expression of miR-199a-5p and SIRT1 and also confirm that catecholamine induction triggers the activities of γ-secretase, leading to shedding of Her2 ECD by ADAM10 and subsequent intramembranous cleavage of Her2 ICD by presenilin-dependent γ-secretase, nuclear translocation of Her2 ICD and enhanced transcription of tumor metastasis-associated gene COX-2 . Chronic stimulation of catecholamine strongly promotes the invasive activities of cancer cells in vitro and spontaneous tumor lung metastasis in mice. Furthermore, the nuclear localization of Her2 was significantly correlated with overexpression of β2-AR in human breast cancer tissues. Conclusion This study illustrates that adrenergic signaling activation triggers Her2 cleavage, resulting in enhanced invasive and metastasis activities of cancer cells. Our data also reveal that an unknown mechanism by which the regulated intramembrane proteolysis (RIP) initiated by β2-AR activation controls a novel Her2-mediated signaling transduction under physiological and pathological conditions.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Meng Wang ◽  
Xiaowen Qiao ◽  
Tamara Cooper ◽  
Wei Pan ◽  
Liang Liu ◽  
...  

AbstractCervical cancer is one of the most common gynecological tumors in the world, and human papillomavirus (HPV) infection is its causative agent. However, the molecular mechanisms involved in the carcinogenesis of cervical cancer still require clarification. Here we found that knockdown of Non-SMC (Structural Maintenance of Chromosomes) condensin I complex subunit H (NCAPH) gene expression significantly inhibited the proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) of cervical cancer cells in vitro, and restrained xenograft tumor formation in vivo. Intriguingly, HPV E7 could form a positive feedback loop with NCAPH. E7 upregulated NCAPH gene expression via E2F1 which initiated NCAPH transcription by binding to its promoter directly. Silencing of NCAPH reduced E7 transcription via promoting the transition of AP-1 heterodimer from c-Fos/c-Jun to Fra-1/c-Jun. Moreover, the E7-mediated NCAPH overexpression was involved in the activation of the PI3K/AKT/SGK signaling pathway. In vivo, NCAPH expression in cervical cancer tissues was significantly higher than which in normal cervix and high-grade squamous intraepithelial lesion (HSIL) tissues, and its expression was significantly correlated with tumor size, depth of invasion and lymph node metastasis. Patients with high NCAPH expression had a significantly better survival outcomes than those with low-expression, suggesting that NCAPH-induced cell proliferation might sensitize cancer cells to adjuvant therapy. In conclusion, our results revealed the role of NCAPH in the carcinogenesis of cervical cancer in vitro and in vivo. The interaction between E7 and NCAPH expands the mechanism of HPV induced tumorigenesis and that of host genes regulating HPV E7.


2012 ◽  
Vol 65 (1) ◽  
pp. 5 ◽  
Author(s):  
Jagat R. Kanwar ◽  
Rupinder K. Kanwar ◽  
Ganesh Mahidhara ◽  
Chun Hei Antonio Cheung

Curing cancer is the greatest challenge for modern medicine and finding ways to minimize the adverse effects caused by chemotherapeutic agents is of importance in improving patient’s physical conditions. Traditionally, chemotherapy can induce various adverse effects, and these effects are mostly caused by the non-target specific properties of the chemotherapeutic compounds. Recently, the use of nanoparticles has been found to be capable of minimizing these drug-induced adverse effects in animals and in patients during cancer treatment. The use of nanoparticles allows various chemotherapeutic drugs to be targeted to cancer cells with lower dosages. In addition to this, the use of nanoparticles also allows various drugs to be administered to the subjects by an oral route. Here, locked nucleic acid (LNA)-modified epithelial cell adhesion molecules (EpCAM), aptamers (RNA nucleotide), and nucleolin (DNA nucleotide) aptamers have been developed and conjugated on anti-cancer drug-loaded nanocarriers for specific delivery to cancer cells and spare normal cells. Significant amounts of the drug loaded nanocarriers (92 ± 6 %) were found to distribute to the cancer cells at the tumour site and more interestingly, normal cells were unaffected in vitro and in vivo. In this review, the benefits of using nanoparticle-coated drugs in various cancer treatments are discussed. Various nanoparticles that have been tried in improving the target specificity and potency of chemotherapeutic compounds are also described.


Sign in / Sign up

Export Citation Format

Share Document