scholarly journals Rice Transcription Factor OsWRKY55 Is Involved in the Drought Response and Regulation of Plant Growth

2021 ◽  
Vol 22 (9) ◽  
pp. 4337
Author(s):  
Kai Huang ◽  
Tao Wu ◽  
Ziming Ma ◽  
Zhao Li ◽  
Haoyuan Chen ◽  
...  

WRKY transcription factors (TFs) have been reported to respond to biotic and abiotic stresses and regulate plant growth and development. However, the molecular mechanisms of WRKY TFs involved in drought stress and regulating plant height in rice remain largely unknown. In this study, we found that transgenic rice lines overexpressing OsWRKY55 (OsWRKY55-OE) exhibited reduced drought resistance. The OsWRKY55-OE lines showed faster water loss and greater accumulation of hydrogen peroxide (H2O2) and superoxide radical (O2−·) compared to wild-type (WT) plants under drought conditions. OsWRKY55 was expressed in various tissues and was induced by drought and abscisic acid (ABA) treatments. Through yeast two-hybrid assays, we found that OsWRKY55 interacted with four mitogen-activated protein kinases (MAPKs) that could be induced by drought, including OsMPK7, OsMPK9, OsMPK20-1, and OsMPK20-4. The activation effects of the four OsMPKs on OsWRKY55 transcriptional activity were demonstrated by a GAL4-dependent chimeric transactivation assay in rice protoplasts. Furthermore, OsWRKY55 was able to reduce plant height under normal conditions by decreasing the cell size. In addition, based on a dual luciferase reporter assay, OsWRKY55 was shown to bind to the promoter of OsAP2-39 through a yeast one-hybrid assay and positively regulate OsAP2-39 expression. These results suggest that OsWRKY55 plays a critical role in responses to drought stress and the regulation of plant height in rice, further providing valuable information for crop improvement.

2021 ◽  
Vol 20 ◽  
pp. 153303382097752
Author(s):  
Ronghua Wang ◽  
Xiuyun Wang ◽  
Jingtao Zhang ◽  
Yanpei Liu

Background: Long non-coding RNAs (lncRNAs) have been reported to play important roles in the progression of human cancers. Herein, bioinformatic analysis identified that LINC00942 was a highly overexpressed lncRNA in lung adenocarcinoma (LUAD). The present study aimed to explore the roles and possible molecular mechanisms of LINC00942 in LUAD. Methods: First, on the basis of TCGA database, the expression and prognosis of LINC00942 were analyzed in LUAD tissues. Then, si-LINC00942 was transfected into A549 and H1299 cells to knockdown the expression of LINC00942. Cell viability was detected by MTT assay. Flow cytometry was used to analyze cell apoptosis. The expressions of PCNA, Bax, Bcl-2, and wnt/β-catenin pathway proteins were detected by western blotting. Dual-luciferase reporter assay was used to evaluate the regulatory relationship between LINC00942 and miR-5006-5p, or miR-5006-5p and FZD1. Results: We discovered that LINC00942 was up-regulated in LUAD tissues compared with adjacent tissues. Besides, we found the increased LINC00942 expression was associated with poor survival. In addition, silencing of LINC00942 suppressed the proliferation, migration, invasion and facilitated the apoptosis of A549 and H1299 cells. Moreover, silencing of LINC00942 repressed the expression of PCNA, Bcl-2, and enhanced Bax expression in A549 and H1299 cells. Mechanically, LINC00942 exerted its effects via enhancing Wnt signaling. LINC00942 functioned as competing endogenous RNA (ceRNA) by binding to miR-5006-5p, upregulating the expression of FZD1, which was a direct target of miR-5006-5p. Conclusion: Our findings indicated that LINC00942/miR-5006-5p/FZD1 axis played important roles in LUAD growth through enhancing Wnt signaling. LINC00942/miR-5006-5p/FZD1 axis might serve as a potential biomarker and therapeutic target for LUAD treatment.


2017 ◽  
Vol 114 (38) ◽  
pp. E8017-E8024 ◽  
Author(s):  
Lin Ling ◽  
Vladimir A. Kokoza ◽  
Changyu Zhang ◽  
Emre Aksoy ◽  
Alexander S. Raikhel

Hematophagous female mosquitoes transmit numerous devastating human diseases, including malaria, dengue fever, Zika virus, and others. Because of their obligatory requirement of a vertebrate blood meal for reproduction, these mosquitoes need a lot of energy; therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. Lipids are the major energy store providing the fuel required for host seeking and reproduction. They are essential components of the fat body, a metabolic tissue that is the insect analog of vertebrate liver and adipose tissue. In this study, we found that microRNA-277 (miR-277) plays an important role in regulating mosquito lipid metabolism. The genetic disruption of miR-277 using the CRISPR-Cas9 system led to failures in both lipid storage and ovary development. miR-277 mimic injection partially rescued these phenotypic manifestations. Examination of subcellular localization of FOXO protein via CRISPR-assisted, single-stranded oligodeoxynucleotide-mediated homology-directed repair revealed that insulin signaling is up-regulated in response to miR-277 depletion. In silico target prediction identified that insulin-like peptides 7 and 8 (ilp7andilp8) are putative targets of miR-277; RNA immunoprecipitation and a luciferase reporter assay confirmed thatilp7andilp8are direct targets of this miRNA. CRISPR-Cas9 depletion ofilp7andilp8led to metabolic and reproductive defects. These depletions identified differential actions of ILP7 and ILP8 in lipid homeostasis and ovarian development. Thus, miR-277 plays a critical role in mosquito lipid metabolism and reproduction by targetingilp7andilp8, and serves as a monitor to control ILP7 and ILP8 mRNA levels.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Vidhu V Thaker ◽  
Eleanor G Seaby ◽  
Casie Genetti ◽  
Jacob Sutherland ◽  
Grazia Ianello ◽  
...  

Abstract Introduction: Aryl hydrocarbon nuclear translocator 2 (ARNT2) is a basic helix-loop-helix (bHLH)-PAS (Per/Arnt/Sim) transcription factor shown to be critical to the development of paraventricular nucleus of the hypothalamus (PVN), key region for energy homeostasis and feeding response. In vivo and in vitro studies have shown that ARNT2 is an obligate heterodimer for SIM1, known cause of monogenic obesity. Null mutations in Arnt2 in animals are not viable, but hypomorphic mutation results in hyperphagic obesity and its associated consequences (1). Due to the critical role of ARNT2 in the development of PVN, we hypothesize that hypomorphic mutations may result in early onset obesity in humans. Methods: The Genetics of Early Childhood Obesity (GECO) study recruits children with severe obesity (BMI > 120% of 95th percentile) of early onset (< 6 years). Whole exome sequencing (WES) was performed in a subset of proband-parent trios. The functional validation of the mutation(s) in ARNT2 is ongoing with co-transfection of tagged Arnt2 and Sim1 in HEK293 cells, with the induction of a luciferase reporter gene under the control of 6 repeats of bHLH-PAS core binding element by the Arnt2-Sim1 complex. Results: Two adolescents from unrelated families were found to have genetic variants in ARNT2. Subject 1 has a novel de novo heterozygous coding variant in ARNT2, c.388 C>G (p.P130A, CADD 25), predicted to be deleterious by 8/12 in silico algorithms. She is a 14-year old Caucasian girl with severe early onset obesity, BMI 28.1 kg/m2 (BMIz +4.72) at 2.5 years of age that has increased to 53.54 kg/m2 (BMIz + 3.25) at 14-years, and height > 95th %tile. She is non-dysmorphic, has developmental delay, absence seizures, behavior abnormalities & glucose intolerance/dyslipidemia secondary to obesity. Using genematcher, we identified another proband with the phenotype of obesity: an African American girl (BMIz +1.9) with biallelic inherited heterozygous variants in ARNT2, c.1228T>A (p.W410R, CADD 29) and c.916G>A (p.G306S, CADD 22). An only child conceived by IVF, she is non-dysmorphic and on treatment for bilateral focal epilepsy. All 3 variants are rare, with mean allele frequency < 0.005 in population-based databases such as gNOMAD. Both the patients have early onset obesity and a significant neurological phenotype. ARNT2 is a highly constrained gene of 717 amino acids with a significant depletion of missense variants in the N-terminus (1-244 aa) and overall fewer loss of function variants in ~282,644 alleles sequenced in gNOMAD. Conclusions: We propose that hypomorphic mutations in ARNT2 could be a potential novel cause of monogenic obesity in humans. Future studies will investigate the molecular mechanisms causing weight dysregulation in patient specific disease relevant hypothalamic neurons. Reference: (1) Turer et al., Dis Model Mech. 2018; 11(12)


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 547
Author(s):  
Jinwon Lee ◽  
Sunok Moon ◽  
Seonghoe Jang ◽  
Sichul Lee ◽  
Gynheung An ◽  
...  

Internode elongation is one of the key agronomic traits determining a plant’s height and biomass. However, our understanding of the molecular mechanisms controlling internode elongation is still limited in crop plant species. Here, we report the functional identification of an atypical basic helix-loop-helix transcription factor (OsbHLH073) through gain-of-function studies using overexpression (OsbHLH073-OX) and activation tagging (osbhlh073-D) lines of rice. The expression of OsbHLH073 was significantly increased in the osbhlh073-D line. The phenotype of osbhlh073-D showed semi-dwarfism due to deficient elongation of the first internode and poor panicle exsertion. Transgenic lines overexpressing OsbHLH073 confirmed the phenotype of the osbhlh073-D line. Exogenous gibberellic acid (GA3) treatment recovered the semi-dwarf phenotype of osbhlh073-D plants at the seedling stage. In addition, quantitative expression analysis of genes involving in GA biosynthetic and signaling pathway revealed that the transcripts of rice ent-kaurene oxidases 1 and 2 (OsKO1 and OsKO2) encoding the GA biosynthetic enzyme were significantly downregulated in osbhlh073-D and OsbHLH073-OX lines. Yeast two-hybrid and localization assays showed that the OsbHLH073 protein is a nuclear localized-transcriptional activator. We report that OsbHLH073 participates in regulating plant height, internode elongation, and panicle exsertion by regulating GA biosynthesis associated with the OsKO1 and OsKO2 genes.


2019 ◽  
Author(s):  
YJ Fan ◽  
XX Li ◽  
Abd Allah A. H. Mohammed ◽  
Y Liu ◽  
Xiwu Gao

Abstract Background: Most aphids exhibit wing polyphenism in which wingless and winged morphs produce depending on the population density and host plant quality. Although the influence of environmental factors on wing polyphenism of aphids have been extensively investigated, molecular mechanisms underlining morph differentiation (i.e. wing development /degeneration), one downstream aspect of the wing polyphenism, has been poorly understood. Results: We examined the expression levels of the twenty genes involved in wing development network, and only vestigial (vg) showed significantly different expression levels in both whole-body and wall-body of third instar nymphs, with 5.4- and 16.14- fold higher expression in winged lines compared to wingless lines, respectively in Rhopalosiphum padi. vg expression was higher in winged lines compared to wingless lines in third, fourth instar nymphs and adults. Larger difference expression was observed in third (21.38-fold) and fourth (20.91-fold) instar nymphs relative to adults (3.12-fold). Suppression of vg using RNAi repressed the wing development of third winged morphs. Furthermore, dual luciferase reporter assay revealed that the miR-147 can target the vg mRNA. Modulation of miR-147b levels by microinjection of its agomir (mimic) decreased vg expression levels and repressed wing development. Conclusions: Our findings suggest that vg is essential for wing development in R. padi and that miR-147b modulates its expression.


2020 ◽  
Author(s):  
YJ Fan ◽  
XX Li ◽  
Abd Allah A. H. Mohammed ◽  
Y Liu ◽  
Xiwu Gao

Abstract Background: Most aphids exhibit wing polyphenism in which wingless and winged morphs produce depending on the population density and host plant quality. Although the influence of environmental factors on wing polyphenism of aphids have been extensively investigated, molecular mechanisms underlining morph differentiation (i.e. wing development /degeneration), one downstream aspect of the wing polyphenism , has been poorly understood. Results: We examined the expression levels of the twenty genes involved in wing development network, and only vestigial (vg ) showed significantly different expression levels in both whole-body and wall-body of third instar nymphs, with 5.4- and 16.14- fold higher expression in winged lines compared to wingless lines, respectively in Rhopalosiphum padi . vg expression was higher in winged lines compared to wingless lines in third, fourth instar nymphs and adults. Larger difference expression was observed in third (21.38-fold) and fourth (20.91-fold) instar nymphs relative to adults (3.12-fold). Suppression of vg using RNAi repressed the wing development of third winged morphs. Furthermore, dual luciferase reporter assay revealed that the miR-147 can target the vg mRNA. Modulation of miR-147b levels by microinjection of its agomir (mimic) decreased vg expression levels and repressed wing development. Conclusions : Our findings suggest that vg is essential for wing development in R. padi and that miR-147b modulates its expression. .


Author(s):  
Hui Sun ◽  
Junwei Zhai ◽  
Li Zhang ◽  
Yingnan Chen

IntroductionEmerging evidence suggests that circular RNAs (circRNAs) play critical roles in tumorigenesis. However, the roles and molecular mechanisms of circRNA leucine-rich repeat immunoglobulin domain-containing protein 3 (circ_LRIG3) in hepatocellular carcinoma (HCC) has not been investigated.Material and methodsThe expression levels of circ_LRIG3, miR-223-3p, and mitogen-activated protein kinase kinase 6 (MAP2K6) were determined by qRT-PCR. Flow cytometry was applied to determine the cell cycle distribution and apoptosis. Cell proliferation, migration and invasion were assessed by MTT, colony formation, and transwell assays. Western blot assay was employed to measure the protein levels of the snail, E-cadherin, MAP2K6, mitogen-activated protein kinase (MAPK), phospho-MAPK (p-MAPK), extracellular signal-regulated kinases (ERKs), and phospho-ERKs (p- ERKs). The relationship between miR-223-3p and circ_LRIG3 or MAP2K6 was predicted by bioinformatics tools and verified by dual-luciferase reporter assay. A xenograft tumor model was established to confirm the functions of circ_LRIG3 in vivo.ResultsCirc_LRIG3 and MAP2K6 expression were enhanced while miR-223-3p abundance was reduced in HCC tissues and cells. Knockdown of circ_LRIG3 inhibited cell proliferation, metastasis, and increasing apoptosis. MiR-223-3p was a target of circ_LRIG3, and its downregulation reversed the inhibitory effect of circ_LRIG3 knockdown on the progression of HCC cells. Moreover, MAP2K6 could bind to miR-223-3p, and MAP2K6 upregulation also abolished the suppressive impact of circ_LRIG3 interference on progression of HCC cells. Additionally, the silence of circ_LRIG3 suppressed the activation of the MAPK/ERK pathway and tumor growth by upregulating miR-223-3p and downregulating MAP2K6.ConclusionsCirc_LRIG3 knockdown inhibited HCC progression through regulating miR-223-3p/MAP2K6 axis and inactivating MAPK/ERK pathway.


Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 586
Author(s):  
Bin Yu ◽  
Qi Sang ◽  
Guoqing Pan ◽  
Chunfeng Li ◽  
Zeyang Zhou

The Toll-Spätzle pathway is a crucial defense mechanism in insect innate immunity, it plays an important role in fighting against pathogens through the regulation of antimicrobial peptide gene expression. Although Toll and Spätzle (Spz) genes have been identified in Bombyx mori, little is known regarding the specific Spz and Toll genes members involved in innate immunity. There is also limited direct evidence of the interaction between Spz and Toll. In this study, the dual-luciferase reporter assay results showed that BmToll11 and BmToll9–1 could activate both drosomycin and diptericin promoters in S2 cells. Furthermore, BmToll11, BmToll9–1, and five BmSpzs genes were found to be significantly upregulated in B. mori infected by Escherichia coli and Staphylococcus aureus. Additionally, the yeast two-hybrid assay results confirmed that BmSpz2, but not other BmSpzs, could interact with both BmToll11 and BmToll9–1. These findings suggest that the activated BmSpz2 can bind with BmToll11 and BmToll9–1 to induce the expression of AMPs after the silkworm is infected by pathogens.


2019 ◽  
Vol 20 (22) ◽  
pp. 5586 ◽  
Author(s):  
Songtao Liu ◽  
Tinashe Zenda ◽  
Anyi Dong ◽  
Yatong Yang ◽  
Xinyue Liu ◽  
...  

Drought stress is a major abiotic factor compromising plant cell physiological and molecular events, consequently limiting crop growth and productivity. Maize (Zea mays L.) is among the most drought-susceptible food crops. Therefore, understanding the mechanisms underlying drought-stress responses remains critical for crop improvement. To decipher the molecular mechanisms underpinning maize drought tolerance, here, we used a comparative morpho-physiological and proteomics analysis approach to monitor the changes in germinating seeds of two incongruent (drought-sensitive wild-type Vp16 and drought-tolerant mutant vp16) lines exposed to polyethylene-glycol-induced drought stress for seven days. Our physiological analysis showed that the tolerant line mutant vp16 exhibited better osmotic stress endurance owing to its improved reactive oxygen species scavenging competency and robust osmotic adjustment as a result of greater cell water retention and enhanced cell membrane stability. Proteomics analysis identified a total of 1200 proteins to be differentially accumulated under drought stress. These identified proteins were mainly involved in carbohydrate and energy metabolism, histone H2A-mediated epigenetic regulation, protein synthesis, signal transduction, redox homeostasis and stress-response processes; with carbon metabolism, pentose phosphate and glutathione metabolism pathways being prominent under stress conditions. Interestingly, significant congruence (R2 = 81.5%) between protein and transcript levels was observed by qRT-PCR validation experiments. Finally, we propose a hypothetical model for maize germinating-seed drought tolerance based on our key findings identified herein. Overall, our study offers insights into the overall mechanisms underpinning drought-stress tolerance and provides essential leads into further functional validation of the identified drought-responsive proteins in maize.


Author(s):  
Jinxin Chen ◽  
Xiaocen Li ◽  
Lu Yang ◽  
Mengmeng Li ◽  
Ye Zhang ◽  
...  

Ovarian cancer is the leading cause of gynecologic cancer-related deaths. Emerging research has revealed a close relationship between circular RNAs (circRNAs) and ovarian cancer development, metastasis, and prognosis. The objective of our research was to further explore the relationship between circASH2L and ovarian cancer. Quantitative real-time polymerase chain reaction was used to detect the differential expression of circRNAs between normal ovaries and ovarian cancer tissues. The impact of circASH2L on the proliferation, invasion, and tumorigenicity of ovarian cancer cells was evaluated using gain- and loss-of-function experiments. The molecular mechanisms of circASH2L function were investigated using bioinformatics analysis, RNA fluorescence in situ hybridization, western blots, and dual-luciferase reporter assays. The results showed that circASH2L was remarkably upregulated in ovarian cancer. The invasion and growth of ovarian cancer cells were suppressed by circASH2L knockdown in vitro, and downregulation of circASH2L restrained both angiogenesis and lymphangiogenesis of tumor xenografts in vivo. Furthermore, circASH2L was mostly distributed in the cytoplasm, where it competes with vascular endothelial growth factor A (VEGFA) for binding to miR-665. These findings indicate that circASH2L has an oncogenic function in ovarian cancer. In conclusion, circASH2L plays a critical role in regulating ovarian cancer cell tumorigenesis, angiogenesis, and lymphangiogenesis through the miR-665/VEGFA axis and, therefore, is a possible candidate target for ovarian cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document