scholarly journals Comparative and Systematic Omics Revealed Low Cd Accumulation of Potato StMTP9 in Yeast: Suggesting a New Mechanism for Heavy Metal Detoxification

2021 ◽  
Vol 22 (19) ◽  
pp. 10478
Author(s):  
Dandan Li ◽  
Guandi He ◽  
Weijun Tian ◽  
Muhammad Saleem ◽  
Yun Huang ◽  
...  

The metal tolerance protein (MTP) family is a very old family with evolutionary conservation and less specific amplification. It seems to retain the original functions of the ancestral genes and plays an important role in maintaining metal homeostasis in plant cells. We identified the potato MTP family members for the first time, the specific and conservative StMPTs were discovered by using systematic and comparative omics. To be surprised, members of the StMTP family seem to have mutated before the evolution of dicotyledon and monocotyledon, and even the loss of the entire subfamily (subfamily G6, G7). Interestingly, StMTP9 represents the conserved structure of the entire subfamily involved in toxic metal regulation. However, the gene structure and transmembrane domain of StMTP8 have undergone specific evolution, showing that the transmembrane domain (Motif13) located at the NH2 terminal has been replaced by the signal peptide domain, so it was selected as the control gene of StMTP9. Through real-time fluorescence quantitative analysis of StMTPs under Cd and Zn stress, a co-expression network was constructed, and it was found that StMTP9 responded significantly to Cd stress, while StMTP8 did the opposite. What excites us is that by introducing StMTPs 8/9 into the ∆ycf1 yeast cadmium-sensitive mutant strain, the functional complementation experiment proved that StMTPs 8/9 can restore Cd tolerance. In particular, StMTP9 can greatly reduce the cadmium content in yeast cells, while StMTP8 cannot. These findings provide a reference for further research on the molecular mechanism of potato toxic metal accumulation.

2009 ◽  
Vol 54 (No. 1) ◽  
pp. 1-9 ◽  
Author(s):  
J. Száková ◽  
V. Zídek ◽  
D. Miholová

The influence of elevated cadmium content in diet on the content of this element in liver, kidney and testes of 68 male rats was studied in dependence on the chemical form of applied cadmium (as inorganic salt – CdCl<sub>2</sub> and organically bound in yeast cells); the influence of elevated arsenic content (as NaAsO<sub>2</sub>) in diet on its content in the same organs was also investigated. The interactions between arsenic and cadmium in the above-mentioned organs were studied. The addition of cadmium to the diet of rats significantly (<I>P</I> < 0.05) increased cadmium content in several organs. The addition of yeast containing the natural level of Cd increased the content of cadmium in liver and kidney of experimental animals significantly (<I>P</I> < 0.05). A significantly (<I>P</I> < 0.05) increased cadmium accumulation in organs was observed after the addition of Cd as CdCl<sub>2</sub>, compared with the addition of Cd as organically bound Cd in yeast cells. At the same time, the addition of yeasts containing the natural level of Cd decreased the Cd accumulation applied as CdCl2 in the examined organs. The addition of sodium arsenite to the diet of rats led to a significantly (<I>P</I> < 0.05) increased arsenic content in all the analyzed organs. The addition of yeasts to the diet increased arsenic content in liver and at the same time suppressed its content in kidneys of experimental animals. The interaction between arsenic and cadmium applied simultaneously was evident. The addition of As to the diet decreased the accumulation of Cd in kidney and increased its accumulation in testes. The addition of Cd to the diet increased arsenic content in liver and kidney and decreased its content in testes.


Author(s):  
Ved Prakash ◽  
Sarika Saxena

Metal toxification has remained one of the problems with the advent of industrial revolution. Plant based remediation are showing increasing promise for use in soils contaminated with organic and inorganic pollutants. A large number of plant families has been identified which has shown significant result in detoxification of heavy metals. Hyperaccumulator plant is capable of sequestering heavy metals in their shoot tissues. High tolerance to HM toxicity is dependent on a reduced metal uptake or increased internal sequestration, which depends on plant and environmental condition. Recent progresses on understanding cellular/molecular mechanisms of metal tolerance by plants are reviewed. This chapter aims to focus on molecular mechanism involved in heavy metal detoxification and tolerance by plants. A different method by which plant effectively converts toxic metal in less toxic compounds has been explained in this chapter. Further, mode of accumulation and sequestration of metals have been explained which are utilized by hyper accumulators.


2001 ◽  
Vol 114 (24) ◽  
pp. 4629-4635
Author(s):  
Michel J. Massaad ◽  
Annette Herscovics

The α1,2-mannosidase Mns1p involved in the N-glycosidic pathway in Saccharomyces cerevisiae is a type II membrane protein of the endoplasmic reticulum. The localization of Mns1p depends on retrieval from the Golgi through a mechanism that involves Rer1p. A chimera consisting of the transmembrane domain of Mns1p fused to the catalytic domain of the Golgi α1,2-mannosyltransferase Kre2p was localized in the endoplasmic reticulum of Δpep4 cells and in the vacuoles of rer1/Δpep4 by indirect immunofluorescence. The split-ubiquitin system was used to determine if there is an interaction between Mns1p and Rer1p in vivo. Co-expression of NubG-Mns1p and Rer1p-Cub-protein A-lexA-VP16 in L40 yeast cells resulted in cleavage of the reporter molecule, protein A-lexA-VP16, detected by western blot analysis and by expression of β-galactosidase activity. Sec12p, another endoplasmic reticulum protein that depends on Rer1p for its localization, also interacted with Rer1p using the split-ubiquitin assay, whereas the endoplasmic reticulum protein Ost1p showed no interaction. A weak interaction was observed between Alg5p and Rer1p. These results demonstrate that the transmembrane domain of Mns1p is sufficient for Rer1p-dependent endoplasmic reticulum localization and that Mns1p and Rer1p interact. Furthermore, the split-ubiquitin system demonstrates that the C-terminal of Rer1p is in the cytosol.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ling Qiao ◽  
Justin Wheeler ◽  
Rui Wang ◽  
Kyle Isham ◽  
Natalie Klassen ◽  
...  

Cadmium (Cd) is a heavy metal that can cause a variety of adverse effects on human health, including cancer. Wheat comprises approximately 20% of the human diet worldwide; therefore, reducing the concentrations of Cd in wheat grain will have significant impacts on the intake of Cd in food products. The tests for measuring the Cd content in grain are costly, and the content is affected significantly by soil pH. To facilitate breeding for low Cd content, this study sought to identify quantitative trait loci (QTL) and associated molecular markers that can be used in molecular breeding. One spring wheat population of 181 doubled haploid lines (DHLs), which was derived from a cross between two hard white spring wheat cultivars “UI Platinum” (UIP) and “LCS Star” (LCS), was assessed for the Cd content in grain in multiple field trials in Southeast Idaho, United States. Three major QTL regions, namely, QCd.uia2-5B, QCd.uia2-7B, and QCd.uia2-7D, were identified on chromosomes 5B, 7B, and 7D, respectively. All genes in these three QTL regions were identified from the NCBI database. However, three genes related to the uptake and transport of Cd were used in the candidate gene analysis. The sequences of TraesCS5B02G388000 (TaHMA3) in the QCd.uia2-5B region and TraesCS7B02G320900 (TaHMA2) and TraesCS7B02G322900 (TaMSRMK3) in the QCd.uia2-7B region were compared between UIP and LCS. TaHMA2 on 7B is proposed for the first time as a candidate gene for grain Cd content in wheat. A KASP marker associated with this gene was developed and it will be further validated in near-isogenic lines via a gene-editing system in future studies.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0235136
Author(s):  
Sara Morais ◽  
Jorge Oliveira ◽  
Catarina Lau ◽  
Mónica Pereira ◽  
Marta Gonçalves ◽  
...  

Background Rare pathogenic variants in either the ITGA2B or ITGB3 genes have been linked to autosomal dominant macrothrombocytopenia associated with abnormal platelet production and function, deserving the designation of Glanzmann Thrombasthenia-Like Syndrome (GTLS) or ITGA2B/ITGB3-related thrombocytopenia. Objectives To describe a series of patients with familial macrothrombocytopenia and decreased expression of αIIbβ3 integrin due to defects in the ITGA2B or ITGB3 genes. Methods We reviewed the clinical and laboratory records of 10 Portuguese families with GTLS (33 patients and 11 unaffected relatives), including the functional and genetic defects. Results Patients had absent to moderate bleeding, macrothrombocytopenia, low αIIbβ3 expression, impaired platelet aggregation/ATP release to physiological agonists and low expression of activation-induced binding sites on αIIbβ3 (PAC-1) and receptor-induced binding sites on its ligand (bound fibrinogen), upon stimulation with TRAP-6 and ADP. Evidence for constitutive αIIbβ3 activation, occurred in 2 out of 9 patients from 8 families studied, but also in 2 out of 12 healthy controls. We identified 7 missense variants: 3 in ITGA2B (5 families), and 4 in ITGB3 (5 families). Three variants (αIIb: p.Arg1026Trp and p.Arg1026Gln and β3: p.Asp749His) were previously reported. The remaining (αIIb: p.Gly1007Val and β3: p.Thr746Pro, p.His748Pro and p.Arg760Cys) are new, expanding the αIIbβ3 defects associated with GTLS. The integration of the clinical and laboratory data allowed the identification of two GTLS subgroups, with distinct disease severity. Conclusions Previously reported ITGA2B and ITGB3 variants related to thrombocytopenia were clustered in a confined region of the membrane-proximal cytoplasmic domains, the inner membrane clasp. For the first time, variants are reported at the outer membrane clasp, at the transmembrane domain of αIIb, and at the membrane distal cytoplasmic domains of β3. This is the largest single-center series of inherited macrothrombocytopenia associated with αIIbβ3 variants published to date.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3813 ◽  
Author(s):  
Fernando-Juan García-Diego ◽  
Mario Rubio-Chavarría ◽  
Pedro Beltrán ◽  
Francisco J. Espinós

Dielectrophoretic force is an electric force experienced by particles subjected to non-uniform electric fields. In recent years, plenty of dielectrophoretic force (DEP) applications have been developed. Most of these works have been centered on particle positioning and manipulation. DEP particle characterization has been left in the background. Likewise, these characterizations have studied the electric properties of particles from a qualitative point of view. This article focuses on the quantitative measurement of cells’ dielectric force, specifically yeast cells. The measures are obtained as the results of a theoretical model and an instrumental method, both of which are developed and described in the present article, based on a dielectrophoretic chamber made of two V-shaped placed electrodes. In this study, 845 cells were measured. For each one, six speeds were taken at different points in its trajectory. Furthermore, the chamber design is repeatable, and this was the first time that measurements of dielectrophoretic force and cell velocity for double yeast cells were accomplished. To validate the results obtained in the present research, the results have been compared with the dielectric properties of yeast cells collected in the pre-existing literature.


2009 ◽  
Vol 8 (4) ◽  
pp. 595-605 ◽  
Author(s):  
Michael R. Botts ◽  
Steven S. Giles ◽  
Marcellene A. Gates ◽  
Thomas R. Kozel ◽  
Christina M. Hull

ABSTRACT Spores are essential particles for the survival of many organisms, both prokaryotic and eukaryotic. Among the eukaryotes, fungi have developed spores with superior resistance and dispersal properties. For the human fungal pathogens, however, relatively little is known about the role that spores play in dispersal and infection. Here we present the purification and characterization of spores from the environmental fungus Cryptococcus neoformans. For the first time, we purified spores to homogeneity and assessed their morphological, stress resistance, and surface properties. We found that spores are morphologically distinct from yeast cells and are covered with a thick spore coat. Spores are also more resistant to environmental stresses than yeast cells and display a spore-specific configuration of polysaccharides on their surfaces. Surprisingly, we found that the surface of the spore reacts with antibodies to the polysaccharide glucuronoxylomannan, the most abundant component of the polysaccharide capsule required for C. neoformans virulence. We explored the role of capsule polysaccharide in spore development by assessing spore formation in a series of acapsular strains and determined that capsule biosynthesis genes are required for proper sexual development and normal spore formation. Our findings suggest that C. neoformans spores may have an adapted cell surface that facilitates persistence in harsh environments and ultimately allows them to infect mammalian hosts.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
F. C. Mariz ◽  
E. C. Coimbra ◽  
A. L. S. Jesus ◽  
L. M. Nascimento ◽  
F. A. G. Torres ◽  
...  

The human papillomavirus (HPV) L1 major capsid protein, which forms the basis of the currently available vaccines against cervical cancer, self-assembles into virus-like particles (VLPs) when expressed heterologously. We report the development of a biotechnology platform for HPV16 L1 protein expression based on the constitutivePGK1promoter (PPGK1) from the methylotrophic yeastPichia pastoris. The L1 gene was cloned under regulation ofPPGK1into pPGKΔ3 expression vector to achieve intracellular expression. In parallel, secretion of the L1 protein was obtained through the use of an alternative vector called pPGKΔ3α, in which a codon optimizedα-factor signal sequence was inserted. We devised a work-flow based on the detection of the L1 protein by dot blot, colony blot, and western blot to classify the positive clones. Finally, intracellular HPV VLPs assembly was demonstrated for the first time in yeast cells. This study opens up perspectives for the establishment of an innovative platform for the production of HPV VLPs or other viral antigens for vaccination purposes, based on constitutive expression inP. pastoris.


2011 ◽  
Vol 16 (7) ◽  
pp. 734-743
Author(s):  
Nicholas A. Meadows ◽  
Barbara Saxty ◽  
Mary S. Albury ◽  
Catherine A. Kettleborough ◽  
Frances M. Ashcroft ◽  
...  

Nicotinamide nucleotide transhydrogenase (NNT) mutant mice show glucose intolerance with impaired insulin secretion during glucose tolerance tests. Uncoupling of the β cell mitochondrial metabolism due to such mutations makes NNT a novel target for therapeutics in the treatment of pathologies such as type 2 diabetes. The authors propose that increasing NNT activity would help reduce deleterious buildup of reactive oxygen species in the inner mitochondrial matrix. They have expressed human Nnt cDNA for the first time in Saccharomyces cerevisiae, and transhydrogenase activity in mitochondria isolated from these cells is six times greater than is seen in wild-type mitochondria. The same mitochondria have partially uncoupled respiration, and the cells have slower growth rates compared to cells that do not express NNT. The authors have used NNT’s role as a redox-driven proton pump to develop a robust fluorimetric assay in permeabilized yeast. Screening in parallel a library of known pharmacologically active compounds (National Institute of Neurological Disorders and Stroke collection) against NNT ± cells, they demonstrate a robust and reproducible assay suitable for expansion into larger and more diverse compound sets. The identification of NNT activators may help in the elucidation of the role of NNT in mammalian cells and assessing its potential as a therapeutic target for insulin secretion disorders.


2018 ◽  
Author(s):  
Houman Moteshareie ◽  
Maryam Hajikarimlou ◽  
Alex Mulet Indrayanti ◽  
Daniel Burnside ◽  
Ana Paula Dias ◽  
...  

AbstractHeavy metal and metalloid contaminations are among the most concerning types of pollutant in the environment. Consequently, it is important to investigate the molecular mechanisms of cellular responses and detoxification pathways for these compounds in living organisms. To date, a number of genes have been linked to the detoxification process. The expression of these genes can be controlled at both transcriptional and translational levels. In baker’s yeast, Saccharomyces cerevisiae, resistance to a wide range of toxic metals is regulated by glutathione S-transferases. Yeast URE2 encodes for a protein that has glutathione peroxidase activity and is homologous to mammalian glutathione S-transferases. The URE2 expression is critical to cell survival under heavy metal stress. Here, we report on the finding of two genes, ITT1, an inhibitor of translation termination, and RPS1A, a small ribosomal protein, that when deleted yeast cells exhibit similar metal sensitivity phenotypes to gene deletion strain for URE2. Neither of these genes were previously linked to metal toxicity. Our gene expression analysis illustrates that these two genes affect URE2 mRNA expression at the level of translation.Summary statementWe identified two yeast genes, ITT1 and RPS1A, that when deleted, results in yeast cells sensitivity to heavy metals and metalloids. Further investigation indicated that they influence the expression of URE2 gene, a key player in metal detoxification, by upregulating its translation. Our findings suggest that ITT1 and RPS1A play an indirect role in responding to toxic metal stress.


Sign in / Sign up

Export Citation Format

Share Document