scholarly journals PRDM12 in Health and Diseases

2021 ◽  
Vol 22 (21) ◽  
pp. 12030
Author(s):  
Monica Rienzo ◽  
Erika Di Zazzo ◽  
Amelia Casamassimi ◽  
Patrizia Gazzerro ◽  
Giovanni Perini ◽  
...  

PRDM12 is a member of the PRDI-BF1 (positive regulatory domain I-binding factor 1) homologous domain (PRDM)-containing protein family, a subfamily of Kruppel-like zinc finger proteins, controlling key processes in the development of cancer. PRDM12 is expressed in a spatio-temporal manner in neuronal systems where it exerts multiple functions. PRDM12 is essential for the neurogenesis initiation and activation of a cascade of downstream pro-neuronal transcription factors in the nociceptive lineage. PRDM12 inactivation, indeed, results in a complete absence of the nociceptive lineage, which is essential for pain perception. Additionally, PRDM12 contributes to the early establishment of anorexigenic neuron identity and the maintenance of high expression levels of pro-opiomelanocortin, which impacts on the program bodyweight homeostasis. PRDMs are commonly involved in cancer, where they act as oncogenes/tumor suppressors in a “Yin and Yang” manner. PRDM12 is not usually expressed in adult normal tissues but its expression is re-activated in several cancer types. However, little information is currently available on PRDM12 expression in cancers and its mechanism of action has not been thoroughly described. In this review, we summarize the recent findings regarding PRDM12 by focusing on four main biological processes: neurogenesis, pain perception, oncogenesis and cell metabolism. Moreover, we wish to highlight the importance of future studies focusing on the PRDM12 signaling pathway(s) and its role in cancer onset and progression.

Author(s):  
Angeles C. Tecalco–Cruz

Abstract:: Human interferon–stimulated gene 15 (ISG15) is a 15–kDa ubiquitin–like protein that can be detected as either free ISG15 or covalently associated with its target proteins through a process termed ISGylation. Interestingly, extracellular free ISG15 has been proposed as a cytokine–like protein, whereas ISGylation is a posttranslational modification. ISG15 is a small protein with implications in some biological processes and pathologies that include cancer. This review highlights the findings of both free ISG15 and protein ISGylation involved in several molecular pathways, emerging as central elements in some cancer types.


2021 ◽  
Vol 9 (2) ◽  
pp. e001364
Author(s):  
Yan Zhang ◽  
Hui Yang ◽  
Jun Zhao ◽  
Ping Wan ◽  
Ye Hu ◽  
...  

BackgroundThe activation of tumor-associated macrophages (TAMs) facilitates the progression of gastric cancer (GC). Cell metabolism reprogramming has been shown to play a vital role in the polarization of TAMs. However, the role of methionine metabolism in function of TAMs remains to be explored.MethodsMonocytes/macrophages were isolated from peripheral blood, tumor tissues or normal tissues from healthy donors or patients with GC. The role of methionine metabolism in the activation of TAMs was evaluated with both in vivo analyses and in vitro experiments. Pharmacological inhibition of the methionine cycle and modulation of key metabolic genes was employed, where molecular and biological analyses were performed.ResultsTAMs have increased methionine cycle activity that are mainly attributed to elevated methionine adenosyltransferase II alpha (MAT2A) levels. MAT2A modulates the activation and maintenance of the phenotype of TAMs and mediates the upregulation of RIP1 by increasing the histone H3K4 methylation (H3K4me3) at its promoter regions.ConclusionsOur data cast light on a novel mechanism by which methionine metabolism regulates the anti-inflammatory functions of monocytes in GC. MAT2A might be a potential therapeutic target for cancer cells as well as TAMs in GC.


Author(s):  
Takayoshi Yamauchi ◽  
Toshiro Moroishi

Abstract Extracellular vesicles (EVs) are small particles that are naturally released from various types of cells. EVs contain a wide variety of cellular components, such as proteins, nucleic acids, lipids and metabolites, which facilitate intercellular communication in diverse biological processes. In the tumour microenvironment, EVs have been shown to play important roles in tumour progression, including immune system–tumour interactions. Although previous studies have convincingly demonstrated the immunosuppressive functions of tumour-derived EVs, some studies have suggested that tumour-derived EVs can also stimulate host immunity, especially in therapeutic conditions. Recent studies have revealed the heterogeneous nature of EVs with different structural and biological characteristics that may account for the divergent functions of EVs in tumour immunity. In this review article, we provide a brief summary of our current understanding of tumour-derived EVs in immune activation and inhibition. We also highlight the emerging utility of EVs in the diagnosis and treatment of cancers and discuss the potential clinical applications of tumour-derived EVs.


2001 ◽  
Vol 276 (18) ◽  
pp. 15264-15268 ◽  
Author(s):  
Nilanjan Ghosh ◽  
Ildiko Gyory ◽  
Gabriela Wright ◽  
Justin Wood ◽  
Kenneth L. Wright

2018 ◽  
Vol 19 (11) ◽  
pp. 3437 ◽  
Author(s):  
Mostafa Elhodaky ◽  
Alan Diamond

Selenium-binding protein 1 (SBP1) is a highly conserved protein that covalently binds selenium. SBP1 may play important roles in several fundamental physiological functions, including protein degradation, intra-Golgi transport, cell differentiation, cellular motility, redox modulation, and the metabolism of sulfur-containing molecules. SBP1 expression is often reduced in many cancer types compared to the corresponding normal tissues and low levels of SBP1 are frequently associated with poor clinical outcome. In this review, the transcriptional regulation of SBP1, the different physiological roles reported for SBP1, as well as the implications of SBP1 function in cancer and other diseases are presented.


2021 ◽  
Author(s):  
H. Robert Frost

AbstractThe genetic alterations that underlie cancer development are highly tissue-specific with the majority of driving alterations occurring in only a few cancer types and with alterations common to multiple cancer types often showing a tissue-specific functional impact. This tissue-specificity means that the biology of normal tissues carries important information regarding the pathophysiology of the associated cancers, information that can be leveraged to improve the power and accuracy of cancer genomic analyses. Research exploring the use of normal tissue data for the analysis of cancer genomics has primarily focused on the paired analysis of tumor and adjacent normal samples. Efforts to leverage the general characteristics of normal tissue for cancer analysis has received less attention with most investigations focusing on understanding the tissue-specific factors that lead to individual genomic alterations or dysregulated pathways within a single cancer type. To address this gap and support scenarios where adjacent normal tissue samples are not available, we explored the genome-wide association between the transcriptomes of 21 solid human cancers and their associated normal tissues as profiled in healthy individuals. While the average gene expression profiles of normal and cancerous tissue may appear distinct, with normal tissues more similar to other normal tissues than to the associated cancer types, when transformed into relative expression values, i.e., the ratio of expression in one tissue or cancer relative to the mean in other tissues or cancers, the close association between gene activity in normal tissues and related cancers is revealed. As we demonstrate through an analysis of tumor data from The Cancer Genome Atlas and normal tissue data from the Human Protein Atlas, this association between tissue-specific and cancer-specific expression values can be leveraged to improve the prognostic modeling of cancer, the comparative analysis of different cancer types, and the analysis of cancer and normal tissue pairs.


2020 ◽  
Vol 6 (4) ◽  
pp. 42 ◽  
Author(s):  
Julia Teppan ◽  
Dominik A. Barth ◽  
Felix Prinz ◽  
Katharina Jonas ◽  
Martin Pichler ◽  
...  

Long non-coding RNAs (lncRNAs) are defined as non-protein coding transcripts with a minimal length of 200 nucleotides. They are involved in various biological processes such as cell differentiation, apoptosis, as well as in pathophysiological processes. Numerous studies considered that frequently deregulated lncRNAs contribute to all hallmarks of cancer including metastasis, drug resistance, and angiogenesis. Angiogenesis, the formation of new blood vessels, is crucial for a tumor to receive sufficient amounts of nutrients and oxygen and therefore, to grow and exceed in its size over the diameter of 2 mm. In this review, the regulatory mechanisms of lncRNAs are described, which influence tumor angiogenesis by directly or indirectly regulating oncogenic pathways, interacting with other transcripts such as microRNAs (miRNAs) or modulating the tumor microenvironment. Further, angiogenic lncRNAs occurring in several cancer types such as liver, gastrointestinal cancer, or brain tumors are summarized. Growing evidence on the influence of lncRNAs on tumor angiogenesis verified these transcripts as potential predictive or diagnostic biomarkers or therapeutic targets of anti-angiogenesis treatment. However, there are many unsolved questions left which are pointed out in this review, hence driving comprehensive research in this area is necessary to enable an effective use of lncRNAs as either therapeutic molecules or diagnostic targets in cancer.


NAR Cancer ◽  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Julianne K David ◽  
Sean K Maden ◽  
Benjamin R Weeder ◽  
Reid F Thompson ◽  
Abhinav Nellore

Abstract This study probes the distribution of putatively cancer-specific junctions across a broad set of publicly available non-cancer human RNA sequencing (RNA-seq) datasets. We compared cancer and non-cancer RNA-seq data from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) Project and the Sequence Read Archive. We found that (i) averaging across cancer types, 80.6% of exon–exon junctions thought to be cancer-specific based on comparison with tissue-matched samples (σ = 13.0%) are in fact present in other adult non-cancer tissues throughout the body; (ii) 30.8% of junctions not present in any GTEx or TCGA normal tissues are shared by multiple samples within at least one cancer type cohort, and 87.4% of these distinguish between different cancer types; and (iii) many of these junctions not found in GTEx or TCGA normal tissues (15.4% on average, σ = 2.4%) are also found in embryological and other developmentally associated cells. These findings refine the meaning of RNA splicing event novelty, particularly with respect to the human neoepitope repertoire. Ultimately, cancer-specific exon–exon junctions may have a substantial causal relationship with the biology of disease.


2020 ◽  
Vol 39 (3) ◽  
pp. 805-823 ◽  
Author(s):  
Georgina P. Sava ◽  
Hailing Fan ◽  
R. Charles Coombes ◽  
Lakjaya Buluwela ◽  
Simak Ali

Abstract Cyclin-dependent kinase 7 (CDK7), along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs progression through the cell cycle via T-loop phosphorylation of cell cycle CDKs. CAK is also a component of the general transcription factor, TFIIH. CDK7-mediated phosphorylation of RNA polymerase II (Pol II) at active gene promoters permits transcription. Cell cycle dysregulation is an established hallmark of cancer, and aberrant control of transcriptional processes, through diverse mechanisms, is also common in many cancers. Furthermore, CDK7 levels are elevated in a number of cancer types and are associated with clinical outcomes, suggestive of greater dependence on CDK7 activity, compared with normal tissues. These findings identify CDK7 as a cancer therapeutic target, and several recent publications report selective CDK7 inhibitors (CDK7i) with activity against diverse cancer types. Preclinical studies have shown that CDK7i cause cell cycle arrest, apoptosis and repression of transcription, particularly of super-enhancer-associated genes in cancer, and have demonstrated their potential for overcoming resistance to cancer treatments. Moreover, combinations of CDK7i with other targeted cancer therapies, including BET inhibitors, BCL2 inhibitors and hormone therapies, have shown efficacy in model systems. Four CDK7i, ICEC0942 (CT7001), SY-1365, SY-5609 and LY3405105, have now progressed to Phase I/II clinical trials. Here we describe the work that has led to the development of selective CDK7i, the current status of the most advanced clinical candidates, and discuss their potential importance as cancer therapeutics, both as monotherapies and in combination settings. ClinicalTrials.gov Identifiers: NCT03363893; NCT03134638; NCT04247126; NCT03770494.


2014 ◽  
Vol 22 (1) ◽  
Author(s):  
Charles W Gay ◽  
Mark D Bishop

Abstract Over the decades, research into placebo responses has shed light onto several endogenous (i.e. produced from within) mechanisms underlying modulation of pain perception initiated after the administration of inert substances (i.e. placebos). Chiropractors and manual therapists should embrace analgesic-placebo-research in an attempt to maximize clinical benefit. Historical views that placebo responses are fake, passive, undesirable, and require deception and therefore should be minimized and avoided in clinical practice are outdated. Further, statements that contend the placebo response represents a single mechanism are overly simplistic. This commentary will discuss research that shows that there are several active biological processes underlying modulation of pain perception involved in placebo analgesia and its counterpart nocebo hyperalgesia. We contend that it is highly likely that, to some extent, all of these biological processes are engaged, in varying degrees, following all interventions and represent endogenous pain modulating processes. Failure, of chiropractors and manual therapists, to embrace a more contemporary view of analgesic-placebo-research serves as a barrier to transferring knowledge into clinical practice and represents a missed opportunity to improve the delivery of current treatments.


Sign in / Sign up

Export Citation Format

Share Document