scholarly journals Stem Cell-Derived β Cells: A Versatile Research Platform to Interrogate the Genetic Basis of β Cell Dysfunction

2022 ◽  
Vol 23 (1) ◽  
pp. 501
Author(s):  
Alberto Bartolomé

Pancreatic β cell dysfunction is a central component of diabetes progression. During the last decades, the genetic basis of several monogenic forms of diabetes has been recognized. Genome-wide association studies (GWAS) have also facilitated the identification of common genetic variants associated with an increased risk of diabetes. These studies highlight the importance of impaired β cell function in all forms of diabetes. However, how most of these risk variants confer disease risk, remains unanswered. Understanding the specific contribution of genetic variants and the precise role of their molecular effectors is the next step toward developing treatments that target β cell dysfunction in the era of personalized medicine. Protocols that allow derivation of β cells from pluripotent stem cells, represent a powerful research tool that allows modeling of human development and versatile experimental designs that can be used to shed some light on diabetes pathophysiology. This article reviews different models to study the genetic basis of β cell dysfunction, focusing on the recent advances made possible by stem cell applications in the field of diabetes research.

2019 ◽  
Vol 49 (1) ◽  
pp. 259-269 ◽  
Author(s):  
Dong Hang ◽  
Amit D Joshi ◽  
Xiaosheng He ◽  
Andrew T Chan ◽  
Manol Jovani ◽  
...  

Abstract Background Increasing evidence suggests that conventional adenomas (CAs) and serrated polyps (SPs) represent two distinct groups of precursor lesions for colorectal cancer (CRC). The influence of common genetic variants on risk of CAs and SPs remain largely unknown. Methods Among 27 426 participants within three prospective cohort studies, we created a weighted genetic risk score (GRS) based on 40 CRC-related single nucleotide polymorphisms (SNPs) identified in previous genome-wide association studies; and we examined the association of GRS (per one standard deviation increment) with risk of CAs, SPs and synchronous CAs and SPs, by multivariable logistic regression. We also analysed individual variants in the secondary analysis. Results During 18–20 years of follow-up, we documented 2952 CAs, 1585 SPs and 794 synchronous CAs and SPs. Higher GRS was associated with increased risk of CAs [odds ratio (OR) = 1.17, 95% confidence interval (CI): 1.12-1.21] and SPs (OR = 1.09, 95% CI: 1.03-1.14), with a stronger association for CAs than SPs (Pheterogeneity=0.01). An even stronger association was found for patients with synchronous CAs and SPs (OR = 1.32), advanced CAs (OR = 1.22) and multiple CAs (OR = 1.25). Different sets of variants were associated with CAs and SPs, with a Spearman correlation coefficient of 0.02 between the ORs associating the 40 SNPs with the two lesions. After correcting for multiple testing, three variants were associated with CAs (rs3802842, rs6983267 and rs7136702) and two with SPs (rs16892766 and rs4779584). Conclusions Common genetic variants play a potential role in the conventional and serrated pathways of CRC. Different sets of variants are identified for the two pathways, further supporting the aetiological heterogeneity of CRC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ionel Sandovici ◽  
Constanze M. Hammerle ◽  
Sam Virtue ◽  
Yurena Vivas-Garcia ◽  
Adriana Izquierdo-Lahuerta ◽  
...  

AbstractWhen exposed to nutrient excess and insulin resistance, pancreatic β-cells undergo adaptive changes in order to maintain glucose homeostasis. The role that growth control genes, highly expressed in early pancreas development, might exert in programming β-cell plasticity in later life is a poorly studied area. The imprinted Igf2 (insulin-like growth factor 2) gene is highly transcribed during early life and has been identified in recent genome-wide association studies as a type 2 diabetes susceptibility gene in humans. Hence, here we investigate the long-term phenotypic metabolic consequences of conditional Igf2 deletion in pancreatic β-cells (Igf2βKO) in mice. We show that autocrine actions of IGF2 are not critical for β-cell development, or for the early post-natal wave of β-cell remodelling. Additionally, adult Igf2βKO mice maintain glucose homeostasis when fed a chow diet. However, pregnant Igf2βKO females become hyperglycemic and hyperinsulinemic, and their conceptuses exhibit hyperinsulinemia and placentomegalia. Insulin resistance induced by congenital leptin deficiency also renders Igf2βKO females more hyperglycaemic compared to leptin-deficient controls. Upon high-fat diet feeding, Igf2βKO females are less susceptible to develop insulin resistance. Based on these findings, we conclude that in female mice, autocrine actions of β-cell IGF2 during early development determine their adaptive capacity in adult life.


2021 ◽  
Vol 23 (8) ◽  
Author(s):  
Germán D. Carrasquilla ◽  
Malene Revsbech Christiansen ◽  
Tuomas O. Kilpeläinen

Abstract Purpose of Review Hypertriglyceridemia is a common dyslipidemia associated with an increased risk of cardiovascular disease and pancreatitis. Severe hypertriglyceridemia may sometimes be a monogenic condition. However, in the vast majority of patients, hypertriglyceridemia is due to the cumulative effect of multiple genetic risk variants along with lifestyle factors, medications, and disease conditions that elevate triglyceride levels. In this review, we will summarize recent progress in the understanding of the genetic basis of hypertriglyceridemia. Recent Findings More than 300 genetic loci have been identified for association with triglyceride levels in large genome-wide association studies. Studies combining the loci into polygenic scores have demonstrated that some hypertriglyceridemia phenotypes previously attributed to monogenic inheritance have a polygenic basis. The new genetic discoveries have opened avenues for the development of more effective triglyceride-lowering treatments and raised interest towards genetic screening and tailored treatments against hypertriglyceridemia. Summary The discovery of multiple genetic loci associated with elevated triglyceride levels has led to improved understanding of the genetic basis of hypertriglyceridemia and opened new translational opportunities.


2021 ◽  
Vol 22 (13) ◽  
pp. 6713
Author(s):  
Romana Bohuslavova ◽  
Ondrej Smolik ◽  
Jessica Malfatti ◽  
Zuzana Berkova ◽  
Zaneta Novakova ◽  
...  

Diabetes is a metabolic disease that involves the death or dysfunction of the insulin-secreting β cells in the pancreas. Consequently, most diabetes research is aimed at understanding the molecular and cellular bases of pancreatic development, islet formation, β-cell survival, and insulin secretion. Complex interactions of signaling pathways and transcription factor networks regulate the specification, growth, and differentiation of cell types in the developing pancreas. Many of the same regulators continue to modulate gene expression and cell fate of the adult pancreas. The transcription factor NEUROD1 is essential for the maturation of β cells and the expansion of the pancreatic islet cell mass. Mutations of the Neurod1 gene cause diabetes in humans and mice. However, the different aspects of the requirement of NEUROD1 for pancreas development are not fully understood. In this study, we investigated the role of NEUROD1 during the primary and secondary transitions of mouse pancreas development. We determined that the elimination of Neurod1 impairs the expression of key transcription factors for α- and β-cell differentiation, β-cell proliferation, insulin production, and islets of Langerhans formation. These findings demonstrate that the Neurod1 deletion altered the properties of α and β endocrine cells, resulting in severe neonatal diabetes, and thus, NEUROD1 is required for proper activation of the transcriptional network and differentiation of functional α and β cells.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 264
Author(s):  
Seon-Heui Cha ◽  
Chunying Zhang ◽  
Soo-Jin Heo ◽  
Hee-Sook Jun

Pancreatic β-cell loss is critical in diabetes pathogenesis. Up to now, no effective treatment has become available for β-cell loss. A polyphenol recently isolated from Polysiphonia japonica, 5-Bromoprotocatechualdehyde (BPCA), is considered as a potential compound for the protection of β-cells. In this study, we examined palmitate (PA)-induced lipotoxicity in Ins-1 cells to test the protective effects of BPCA on insulin-secreting β-cells. Our results demonstrated that BPCA can protect β-cells from PA-induced lipotoxicity by reducing cellular damage, preventing reactive oxygen species (ROS) overproduction, and enhancing glucose-stimulated insulin secretion (GSIS). BPCA also improved mitochondrial morphology by preserving parkin protein expression. Moreover, BPCA exhibited a protective effect against PA-induced β-cell dysfunction in vivo in a zebrafish model. Our results provide strong evidence that BPCA could be a potential therapeutic agent for the management of diabetes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ebrahim Mokhtari ◽  
Hossein Farhadnejad ◽  
Farshad Teymoori ◽  
Parvin Mirmiran ◽  
Fereidoun Azizi

Abstract Background We aim to assess the association of empirical dietary (EDIH) and lifestyle (ELIH) index for hyperinsulinemia with the risk of insulin resistance, hyperinsulinemia, insulin sensitivity, and β-cell dysfunction in Iranian adults. Methods In this prospective study, a total of 1244 men and women aged ≥ 20 years were selected among participants of the Tehran lipid and glucose study and followed for 3.2 years. Dietary intakes were assessed using a valid semi-quantitative food frequency questionnaire. Dietary and lifestyle insulinemic potential indices were calculated using dietary intake, body mass index, and physical activity information. Multivariable logistic regression was used to estimate the associated risk of a 3-year incidence of insulin-related disorders. Results The mean ± SD age and BMI of all eligible participants (42.7% males) were 43.0 ± 13.0 and 27.4 ± 4.9 in the study's baseline. After adjusting for all potential confounders, participants in the highest tertile of ELIH score had a greater risk of developing hyperinsulinemia (OR:2.42, 95%CI:1.52–3.86, P for trend =  < 0.001), insulin resistance (OR:2.71, 95%CI:1.75–4.18, P for trend =  < 0.001) and insulin insensitivity (OR:2.65, 95%CI: 1.72–4.10, P for trend =  < 0.001) compared with those in the lowest tertile. However, the risk of incident β-cell dysfunction was lower in individuals with a higher score of ELIH in comparison to those with the lowest score (OR:0.30, 95%CI:0.19–0.45, P for trend =  < 0.001). Conclusions Empirical lifestyle index for hyperinsulinemia was directly associated with insulin resistance, insulin insensitivity, and hyperinsulinemia and was inversely associated with β-cells dysfunction.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dror Sever ◽  
Anat Hershko-Moshe ◽  
Rohit Srivastava ◽  
Roy Eldor ◽  
Daniel Hibsher ◽  
...  

AbstractNF-κB is a well-characterized transcription factor, widely known for its roles in inflammation and immune responses, as well as in control of cell division and apoptosis. However, its function in β-cells is still being debated, as it appears to depend on the timing and kinetics of its activation. To elucidate the temporal role of NF-κB in vivo, we have generated two transgenic mouse models, the ToIβ and NOD/ToIβ mice, in which NF-κB activation is specifically and conditionally inhibited in β-cells. In this study, we present a novel function of the canonical NF-κB pathway during murine islet β-cell development. Interestingly, inhibiting the NF-κB pathway in β-cells during embryogenesis, but not after birth, in both ToIβ and NOD/ToIβ mice, increased β-cell turnover, ultimately resulting in a reduced β-cell mass. On the NOD background, this was associated with a marked increase in insulitis and diabetes incidence. While a robust nuclear immunoreactivity of the NF-κB p65-subunit was found in neonatal β-cells, significant activation was not detected in β-cells of either adult NOD/ToIβ mice or in the pancreata of recently diagnosed adult T1D patients. Moreover, in NOD/ToIβ mice, inhibiting NF-κB post-weaning had no effect on the development of diabetes or β-cell dysfunction. In conclusion, our data point to NF-κB as an important component of the physiological regulatory circuit that controls the balance of β-cell proliferation and apoptosis in the early developmental stages of insulin-producing cells, thus modulating β-cell mass and the development of diabetes in the mouse model of T1D.


2015 ◽  
Vol 75 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Romano Regazzi ◽  
Adriana Rodriguez-Trejo ◽  
Cécile Jacovetti

Insulin is a key hormone controlling metabolic homeostasis. Loss or dysfunction of pancreatic β-cells lead to the release of insufficient insulin to cover the organism needs, promoting diabetes development. Since dietary nutrients influence the activity of β-cells, their inadequate intake, absorption and/or utilisation can be detrimental. This review will highlight the physiological and pathological effects of nutrients on insulin secretion and discuss the underlying mechanisms. Glucose uptake and metabolism in β-cells trigger insulin secretion. This effect of glucose is potentiated by amino acids and fatty acids, as well as by entero-endocrine hormones and neuropeptides released by the digestive tract in response to nutrients. Glucose controls also basal and compensatory β-cell proliferation and, along with fatty acids, regulates insulin biosynthesis. If in the short-term nutrients promote β-cell activities, chronic exposure to nutrients can be detrimental to β-cells and causes reduced insulin transcription, increased basal secretion and impaired insulin release in response to stimulatory glucose concentrations, with a consequent increase in diabetes risk. Likewise, suboptimal early-life nutrition (e.g. parental high-fat or low-protein diet) causes altered β-cell mass and function in adulthood. The mechanisms mediating nutrient-induced β-cell dysfunction include transcriptional, post-transcriptional and translational modifications of genes involved in insulin biosynthesis and secretion, carbohydrate and lipid metabolism, cell differentiation, proliferation and survival. Altered expression of these genes is partly caused by changes in non-coding RNA transcripts induced by unbalanced nutrient uptake. A better understanding of the mechanisms leading to β-cell dysfunction will be critical to improve treatment and find a cure for diabetes.


2021 ◽  
Author(s):  
Zehua Liu ◽  
Bo Li

Recent studies support the view that highland barley as whole grain diet showed anti-hyperglycemic effects, while little information is available about the active compounds that could ameliorate pancreatic β cells...


2010 ◽  
Vol 30 (6) ◽  
pp. 445-453 ◽  
Author(s):  
Marta Michalska ◽  
Gabriele Wolf ◽  
Reinhard Walther ◽  
Philip Newsholme

Various pancreatic β-cell stressors including cytokines and saturated fatty acids are known to induce oxidative stress, which results in metabolic disturbances and a reduction in insulin secretion. However, the key mechanisms underlying dysfunction are unknown. We investigated the effects of prolonged exposure (24 h) to pro-inflammatory cytokines, H2O2 or PA (palmitic acid) on β-cell insulin secretion, ATP, the NADPH oxidase (nicotinamide adenine dinucleotide phosphate oxidase) component p47phox and iNOS (inducible nitric oxide synthase) levels using primary mouse islets or clonal rat BRIN-BD11 β-cells. Addition of a pro-inflammatory cytokine mixture [IL-1β (interleukin-1β), TNF-α (tumour necrosis factor-α) and IFN-γ (interferon-γ)] or H2O2 (at sub-lethal concentrations) inhibited chronic (24 h) levels of insulin release by at least 50% (from islets and BRIN-BD11 cells), while addition of the saturated fatty acid palmitate inhibited acute (20 min) stimulated levels of insulin release from mouse islets. H2O2 decreased ATP levels in the cell line, but elevated p47phox and iNOS levels as did cytokine addition. Similar effects were observed in mouse islets with respect to elevation of p47phox and iNOS levels. Addition of antioxidants SOD (superoxide dismutase), Cat (catalase) and NAC (N-acetylcysteine) attenuated H2O2 or the saturated fatty acid palmitate-dependent effects, but not cytokine-induced dysfunction. However, specific chemical inhibitors of NADPH oxidase and/or iNOS appear to significantly attenuate the effects of cytokines, H2O2 or fatty acids in islets. While pro-inflammatory cytokines are known to increase p47phox and iNOS levels in β-cells, we now report that H2O2 can increase levels of the latter two proteins, suggesting a key role for positive-feedback redox sensitive regulation of β-cell dysfunction.


Sign in / Sign up

Export Citation Format

Share Document