scholarly journals Soil Contamination in the Problem Areas of Agrarian Slovakia

Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Danica Fazekašová ◽  
František Petrovič ◽  
Juraj Fazekaš ◽  
Lenka Štofejová ◽  
Ivan Baláž ◽  
...  

Landfills, old and abandoned mines, industrial sites, heaps, sludge ponds and other sources of pollution represent environmental threats and are characterized as chemical time bombs. This work is focused on the evaluation of soil contamination by risk elements using various indices (geoaccumulation index—Igeo, enrichment factor—EF, contamination factor—Cif and degree of contamination—Cd). These selected agrarian problem areas are located in Slovakia, especially in the air pollution field of landfills consisting of power plant fly ash, tannery and footwear wastes, leachate (lúženec), iron ore slag, waste from metallurgy and sludge ponds in which coal sludge waste is deposited and waste from ore treatment. Nine research sites in the agrarian region of Slovak Republic were monitored. Ten risk elements (Fe, Mn, Zn, Cu, Co, Ni, Cr, Pb, Cd and Hg) and pH/H2O were included in this study and were determined in surface soils (of 0.05 m to 0.15 m) using atomic absorption spectrometry (AAS). Our study showed the highest exceedance of the limit values of risk elements in the order Ni (51.85 times) > Co (25.47 times) > Cd (13.70 times) > Cu (12.78 times) > Cr (8.37 times) > Fe (8.26 times) > Hg (7.94 times) > Zn (5.71 times) > Pb (4.63 times). The content of risk elements increased based on the average values of Igeo in the order of Cr < Hg < Zn < Pb < Ni < Cu < Cd. Igeo values for cadmium indicated mild-to-extreme contamination at all sites. We found the most significant enrichment in the order of Cd > Cu > Pb > Ni > Zn > Hg > Cr. EF values for cadmium indicated extremely high enrichment; the Cif and Cd values indicated a very high degree of soil contamination near the nickel smelter landfill, an industrial metallurgical plant and old but active mines. The studied areas pose a serious danger not only to the soil but also to groundwater and biota due to the prevailing low soil reaction, which increases the mobility of toxic elements. The study provides important results for the development of effective strategies for the control and remediation of endangered areas.

2021 ◽  
Vol 900 (1) ◽  
pp. 012043
Author(s):  
L Stofejova ◽  
D Fazekasova ◽  
J Fazekas

Abstract Contamination of soil with potential risk elements is one of the most pressing environmental problems in the world and causes serious environmental damage, but also threatens human health. This paper presents the results of research that was focused on analyzing soil contamination in the field of magnesite mining in urban and agrarian land nearby the former factory in Košice (Slovakia). Field and laboratory research were performed. Soil sampling was performed in 10 localities of the studied area. The content of risk elements (Cd, Hg, Pb, Cr, Zn, Cu, As, Ni, Mn, Mg) in soils was analyzed under laboratory conditions. The obtained data expressed as average concentrations of metals in sampled soils, as well as background values of the contents of monitored elements for the soils of the Slovak Republic, were used to assess soil pollution and identify the environmental risk. The acquired knowledge about the contamination of the soil with risk elements in the area around the former magnesite factory in Košice could help in the planning of remediation measures and improve the state of the environment in the studied area.


2018 ◽  
Vol 28 (4) ◽  
pp. 1329-1333
Author(s):  
Miodrag Šmelcerović

The protection of the environment and people’s health from negative influences of the pollution of air as a medium of the environment requires constant observing of the air quality in accordance with international standards, the analysis of emission and imission of polluting matters in the air, and their connection with the sources of pollution. Having in mind the series of laws and delegated legislations which define the field of air pollution, it is necessary to closely observe these long-term processes, discovering cause-and-effect relationships between the activities of anthropogenic sources of emission of polluting matters and the level of air degradation. The relevant evaluation of the air quality of a certain area can be conducted if the level of concentration of polluting matters characteristic for the pollution sources of this area is observed in a longer period of time. The data obtained by the observation of the air pollution are the basis for creation of the recovery program of a certain area. Vranje is a town in South Serbia where there is a bigger number of anthropogenic pollution sources that can significantly diminish the air quality. The cause-and-effect relationship of the anthropogenic sources of pollution is conducted related to the analysis of systematized data which are in the relevant data base of the authorized institution The Institute of Public Health Vranje, for the time period between the year of 2012. and 2017. By the analysis of data of imission concentrations of typical polluting matters, the dominant polluting matters were determined on the territory of the town of Vranje, the ones that are the causers of the biggest air pollution and the risk for people’s health. Analysis of the concentration of soot, sulfur dioxide and nitrogen oxides indicates their presence in the air of Vranje town area in concentrations that do not exceed the permitted limit values annually. The greatest pollution is caused by the soot content in the air, especially in the winter period when the highest number of days with the values above the limit was registered. By perceiving the influence of natural and anthropogenic factors, it is clear that the concentration of polluting matters can be decreased only by establishing control over anthropogenic sources of pollution, and thus it can be contributed to the improvement of the air quality of this urban environment.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3143
Author(s):  
Danica Fazekašová ◽  
Juraj Fazekaš ◽  
Lenka Štofejová

The focus of this work is on the evaluation of selected water quality indicators as per the applicable regulations, taking into account European and national legislation and the evaluation of the risk of contamination of surface waters with toxic elements using the contamination factor (Cfi) and the degree of pollution (Cd). The studied area of Slovinky is an important ore region, with rich deposits of copper and silver ores that have been mined for centuries. One of the most important remnants of mining activities in this area is the Slovinky tailing impoundment. The sludge pond area has an area of 15 ha, and the height of the dam is 113 metres above sea level, which makes the sludge pond one of the tallest water structures in Slovakia. The Slovinský creek was monitored in the years 2010, 2011, and 2019 at five sampling points, which were selected to map the entire length of the water flow from the source to the estuary to the river Hornád. Risk elements (As, Cu, Cd, and Fe) and physicochemical parameters (such as temperature, dissolved oxygen concentration, conductivity, resistivity, salinity, total dissolved solids, NaCl, redox potential, and pH) were included in this study and evaluated according to applicable regulations, taking into account European legislation (Act No. 269/2010 Coll., guideline value WHO 2011). The results of the experimental studies showed that the highest values of As and Cu were measured at the site where drainage waters from the Slovinky tailing impoundment and mining water of the Alžbeta shaft flow into the creek. The concentration of As exceeded the limit value by up to 31 times and the concentration of Cu 16.8–134.5 times. At the same time, the highest values of conductivity, salinity, total dissolved solids, and NaCl were found, and there was no acidification of water at the site that had the highest pollution. Water contamination was assessed based on Cfi and Cd; our findings showed that the surface water from the site of contamination, along the entire length of the stream, was very highly contaminated with risk elements in the order of As > Fe > Cu, and the level of contamination decreased with distance from the site of contamination. Our research shows that seepage of toxic substances from sludge ponds and abandoned mines has caused the requirements for the quality of surface water of the Slovinský creek not to be met. In connection with mining activities, surface streams act as a transport medium through which other components of the environment can be polluted.


2020 ◽  
Vol 28 (2) ◽  
pp. 112-130
Author(s):  
Margarita M. Redina ◽  
Alexander P. Khaustov ◽  
Xiangkai Li ◽  
Zhandos D. Kenzhin ◽  
Polina Yu. Silaeva

The characteristics of the hazard of urban soils pollution by polycyclic aromatic hydrocarbons (PAHs) are considered: naphthalene (Naph), anthracene (An), phenanthrene (Phen), pyrene (Py), fluoranthene (Flu), chrysene (Chr), benzo(a)anthracene (BaA), benzo[a]pyrene (BaP), benzo[b]fluoranthene (BbFlu), benzo[k]fluoranthene (BkFlu), dibenzo[ah]antracene (DBa), benzo[ghi]perylene (Bghi), indeno[1,2,3-c,d]pyrene). On the example of monitoring data on the RUDN University campus and the adjacent South-West Forest Park, modern approaches to assessing the hazard of pollution levels and the environmental risk of soil pollution are demonstrated: RQ indicators, total relative toxicity in comparison to BaP, carcinogenic risk, behavior of the representative PAHs. On the basis of a critical analysis of the pollution indicators, the optimal approaches to assessing the danger of the presence of polyarenes in the soils of urban areas are demonstrated. The leading sources of pollution (influence of vehicles) were identified. Different levels of environmental hazard of polyarene soil contamination in different functional zones of the analyzed territory are demonstrated: relatively clear territory in the middle zone of the park and a specific configuration of the pollution field on the rest of the territory. The necessity of developing ecosystem standards for urban natural complexes is justified, taking into account the individual characteristics of soils, the role of soil microbiota, the specificity of the use of the territory and the characteristics of pollution sources.


2020 ◽  
Vol 838 ◽  
pp. 164-169
Author(s):  
Juraj Fazekaš ◽  
Danica Fazekašova ◽  
Jana Chovancová

The paper presents the results of the evaluation of the environmental potential of soils in the area affected by the long-term mining activity. The environmental potential index consists of a numerical expression of the ability to provide water storage, immobilization of risk elements, and immobilization and transformation of organic pollutants. The exceedance of the limit values Hg, Cu, Zn, As, Cd and Pb was found in the soils of the investigated area of central Spiš. The rate of soil immobilization of risk elements is very low to high. The point value expressing the ability of agricultural lands to provide environmental functions is very low to medium in the studied areas, the financial expression of the values of the environmental potentials indexes is in the range of 7 100 to 14 000 € ha-1, while the average value of 1 ha of agricultural land in Slovakia is about 14 200 €.


2013 ◽  
Vol 32 (2) ◽  
Author(s):  
Margita Kuklová ◽  
Ján Kukla

AbstractKuklova M., Kukla J.: Transfer of risk elements in soil-bilberry system. Ekologia (Bratislava), Vol. 32, No. 2, p. 211-219, 2013.Transfer of Al, Cr and Ni in the soil-plant (Vaccinium myrtillus L.) system was examined in four forest ecosystems in the localities Muraň (skeli-humic podzols) and Hliniky (dystric cambisols) in the protected zone of the NP Slovensky raj. In case of Al, the transfer coefficients were low, exceeding 1 only in the litter horizon on the damaged plot in the locality Muraň. The Al content in soils was the highest at a depth of 60-70 cm (10 249 mg kg-1) on the undamaged plot in Hliniky. The amounts of Al accumulated in bilberries were higher than the background value in plants, and they made 11-22% of the maximum Al contents detected in Ooh horizons of the studied soils. Cr on the damaged plot in the locality Muraň displayed higher transfer coefficients (range 1.09-11.3) in comparison with the other plots (0.03-0.59). Considering the value representing the maximum Cr amount detected in Ooh horizon in the corresponding locality as 100%, the content of Cr in bilberries growing on the damaged plot in Muraň was 109%, in contrast to 2% on the damaged plot in Hliniky. The concentrations of Ni in soils exceeded limit values in the surface humus horizons on all studied plots. Ni displayed higher transfer coefficients, exceeding 1 only on the damaged plot in the locality Muraň. Bilberries had accumulated 6-28% Ni in the locality Muraň, and 2-6% in the locality Hliniky of the maximum amounts detected in Ooh horizons of soils. The differences in mean values of transfer coefficients for Al, Ni and Cr were statistically significant (p < 0.05).


2021 ◽  
Vol 306 ◽  
pp. 04013
Author(s):  
Triyani Dewi ◽  
Edhi Martono ◽  
Eko Hanudin ◽  
Rika Harini

Monitoring and assessment of heavy metal concentrations in shallot fields are needed to evaluate the potential risk of contamination due to heavy metals. This study aims to define the status of heavy metal contamination in shallot fields using contamination indices. A total of 184 soil samples (0-20 cm) were taken from shallot fields in Brebes Regency, Central Java. The soil samples were analyzed for the concentration of five heavy metals (Cd, Pb, Ni, Cr, and Co) with HNO3 and HClO4 extracts and measured using AAS. Assessment of the status of heavy metals contamination in the soil using contaminant factor (CF), geo-accumulation index (I-geo), and pollution load index (PLI). The mean concentration in shallot fields showed the following order Cr > Ni > Pb > Co > Cd and the concentration were still below critical limit values. Four metals are Pb, Cr, Co, and Ni are low contamination (CF<1), while Cd is considerable until very high contamination factor. Based on I-geo values, shallot fields are practically uncontaminated of Pb, Co, Ni, and Cr (I-geo<1), meanwhile the status of Cd is uncontaminated to moderately contaminated (0<I-geo<1). Generally, the shallot fields in Brebes Regency, Central Java is unpolluted with five metals (PLI<1).


2021 ◽  
Author(s):  
Waseem sardar ◽  
Aziz Ur Rahman ◽  
javed nawab ◽  
Sardar Khan ◽  
Abid Ali ◽  
...  

Abstract In recent years, a series of environmental and ecological problems have occurred due to enhanced anthropogenic disturbances for precious minerals mining. Traditional medicines have become an important pillar in national homeopathic treatment system especially in mountainous environment of developing countries. The current study investigates the level of potentially toxic elements ( PTEs ) contamination in degraded mining soil and medicinal plants along the mafic-ultramafic rocks in the Kohistan region. Soil samples and medicinal plant species were collected from the degraded mining area and were screened for PTEs (Pb, Cr, Ni, Mn, Zn, and Cd) using atomic absorption spectrometry. Various pollution indices were used for PTEs such as contamination factor (CF), pollution load index (PLI) and translocation factor (TF) in degraded mining soil and medicinal plants. The mean concentration of PTEs found in soil were in order of Mn>Ni>Cr >Pb>Zn>Cd, while in medicinal plants were Pb>Cr>Mn>Ni>Zn>Cd. Highest bioaccumulation was observed in Ajuga bracteosa (Cr=349 mg kg –1 ), Phlomis bracteosa (Pb=335 mg kg –1 ), Chenopodium ambrosioides (Mn = 304.3 mg kg –1 ), Isatis costata (Ni=169 mg kg –1 ), Ajuga parviflora (Zn = 38.4 mg kg –1 ) and Salvia moorcoftiana (Cd=11 mg kg –1 ). Furthermore, the concentrations of PTEs were significantly higher ( p <0.001) in degraded mining soil and medicinal plants than the reference site, which may be attributed to the mining and open dumping of mining wastes. The present study revealed that chromite mining and open dumping of mining wastes can cause serious environmental problem in the study area. Furthermore, medicinal plants grown in degraded mining soil may pose risk to the local inhabitants as most of the people consume these plants for various health problems.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Janette Musilova ◽  
Judita Bystricka ◽  
Alena Vollmannova ◽  
Beata Janotova ◽  
Matyas Orsak ◽  
...  

Heavy metals are among the most serious environmental contaminants in mining districts. Soil, as one of the main components of the environment, is the place of heavy metal entry into plants and consequently into the food chain, too. Potatoes grown in the region of Middle Spis (Slovakia) may be a source of increased content of heavy metals and pose a health risk to the consumer. The contents of heavy metals (Cd, Pb, and Ni) in potato and soil samples were determined using the AAS method and compared with limit values set by the Slovak Republic and the European Union. The content of heavy metals was determined in 12 potato cultivars with different length of vegetation period (mid-early, very early, and early, resp.), which were grown in three localities with a highly disturbed environment. Total contents and mobile forms of heavy metals as well as physical and chemical properties were determined in soil samples which were collected from the same sampling sites. Only Pb content in potato tubers was higher than the hygienic limit value (0.1 mg kg−1 FM) in 15 sampling sites (interval was n.d. –0.2298 mg kg−1 FM). The contents of exchangeable forms (total content) of heavy metals in soil were ranged between the intervals: Cd 0.004–0.055 (0.94–1 56), Pb 0.023–0.295 (17.00–26.80), and Ni 0.019–0.475 (30.80–71.00) mg kg−1. At current average consumption levels of potatoes, tolerable weekly intake (TWI) or tolerable daily intake (TDI) for observed heavy metals was not exceeded.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4350
Author(s):  
Kinga Wieczorek ◽  
Anna Turek ◽  
Małgorzata Szczesio ◽  
Wojciech M. Wolf

The pollution of urban soils by metals is a global problem. Prolonged exposure of habitants who are in contact with metals retained in soil poses a health risk. This particularly applies to industrialized cities with developed transport networks. The aim of the study was to determine the content and spatial distribution of mobile metal fractions in soils of the city of Łódź and to identify their load and sources. Multivariate statistical analysis (principal component analysis (PCA), cluster analysis (CA)), combined with GIS, were used to make a comprehensive evaluation of the soil contamination. Hot-spots and differences between urban and suburban areas were also investigated. Metals were determined by atomic absorption spectrometry (AAS) after soil extraction with 1 mol L−1 HCl. In most sites, the metal content changes in the following order: Zn > Pb > Cu > Ni > Cd. About one-third of the samples are considerably (or very highly) contaminated, (contamination factor, CF > 3) with Cu, Pb, or Zn. In almost 40% of the samples, contaminated soils were found (pollution load index, PLI > 1). All metals have a strong influence on the first principal component (PC1), whereas second principal component (PC2) is related to pH. Polluted soils are located in the downtown, in the south and east part of the city. The distribution of contamination coincides with the urban layout, low emission sources and former industrial areas of Łódź.


Sign in / Sign up

Export Citation Format

Share Document