scholarly journals Characterization of Acid-Aged Biochar and Its Ammonium Adsorption in an Aqueous Solution

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2270 ◽  
Author(s):  
Zhiwen Wang ◽  
Jie Li ◽  
Guilong Zhang ◽  
Yancai Zhi ◽  
Dianlin Yang ◽  
...  

According to its characteristics, biochar originating originating from biomass is accepted as a multifunctional carbon material that supports a wide range of applications. With the successfully used in reducing nitrate and adsorbing ammonium, the mechanism of biochar for nitrogen fixation in long-term brought increasing attention. However, there is a lack of analysis of the NH4+-N adsorption capacity of biochar after aging treatments. In this study, four kinds of acid and oxidation treatments were used to simulate biochar aging conditions to determine the adsorption of NH4+-N by biochar under acidic aging conditions. According to the results, acid-aged biochar demonstrated an enhanced maximum NH4+-N adsorption capacity of peanut shell biochar (PBC) from 24.58 to 123.28 mg·g−1 after a H2O2 modification. After the characteristic analysis, the acid aging treatments, unlike normal chemical modification methods, did not significantly change the chemical properties of the biochar, and the functional groups and chemical bonds on the biochar surface were quite similar before and after the acid aging process. The increased NH4+-N sorption ability was mainly related to physical property changes, such as increasing surface area and porosity. During the NH4+ sorption process, the N-containing functional groups on the biochar surface changed from pyrrolic nitrogen to pyridinic nitrogen, which showed that the adsorption on the surface of the aged biochar was mainly chemical adsorption due to the combination of π-π bonds in the sp2 hybrid orbital and a hydrogen bonding effect. Therefore, this research establishes a theoretical basis for the agricultural use of aged biochar.

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1422
Author(s):  
Viktor V. Revin ◽  
Alexander V. Dolganov ◽  
Elena V. Liyaskina ◽  
Natalia B. Nazarova ◽  
Anastasia V. Balandina ◽  
...  

Currently, there is an increased demand for biodegradable materials in society due to growing environmental problems. Special attention is paid to bacterial cellulose, which, due to its unique properties, has great prospects for obtaining functional materials for a wide range of applications, including adsorbents. In this regard, the aim of this study was to obtain a biocomposite material with adsorption properties in relation to fluoride ions based on bacterial cellulose using a highly productive strain of Komagataeibacter sucrofermentans H-110 on molasses medium. Films of bacterial cellulose were obtained. Their structure and properties were investigated by FTIR spectroscopy, NMR, atomic force microscopy, scanning electron microscopy, and X-ray structural analysis. The results show that the fiber thickness of the bacterial cellulose formed by the K. sucrofermentans H-110 strain on molasses medium was 60–90 nm. The degree of crystallinity of bacterial cellulose formed on the medium was higher than on standard Hestrin and Schramm medium and amounted to 83.02%. A new biocomposite material was obtained based on bacterial cellulose chemically immobilized on its surface using atomic-layer deposition of nanosized aluminum oxide films. The composite material has high sorption ability to remove fluoride ions from an aqueous medium. The maximum adsorption capacity of the composite is 80.1 mg/g (F/composite). The obtained composite material has the highest adsorption capacity of fluoride from water in comparison with other sorbents. The results prove the potential of bacterial cellulose-based biocomposites as highly effective sorbents for fluoride.


2013 ◽  
Vol 726-731 ◽  
pp. 1687-1690
Author(s):  
Jing Zhang ◽  
Jian Song Liu ◽  
Chun Liu ◽  
Jing Liang Yang ◽  
Lei Zhang

The structure and surface chemical properties of activated carbon after nitric acid modification and their influences on adsorption and catalytic ozonation of acid red 3R were investigated. The results showed that both specific surface area and micropore volume of activated carbon decreased, but mesopore volume increased after nitric acid modification. The adsorption capacity and catalytic ozonation performance of modified activated carbon were influenced due to the increased surface acidic functional groups. The adsorption capacity of modified activated carbon was enhanced under acidic condition due to dispersion interaction between increased surface acidic functional groups and acid red 3R. The increase in surface acidic functional groups of activated carbon was also considered to be responsible for improvement of the catalytic ozonation of acid red 3R under alkaline condition, because of their participation in the ozone decomposition and OH generation.


Author(s):  
Jean-Noe¨l Jaubert ◽  
Romain Privat ◽  
Michel Molie`re

In the recent years, the quest for an ever wider cluster of sustainable primary energies has prompted an increasing number of attempts to combine the emission sobriety of bio fuels with the energy density advantage of fossil fuels. A number of compositions incorporating hydrocarbons, ethanol and in some cases limited amounts of water have been proposed, especially in the forms of micro emulsions, with a variable success. Indeed due to markedly different physical and chemical properties, ethanol and gasoil are able to blend and form homogeneous solutions only in limited proportion ranges. Indeed, such mixtures often give rise to liquid-liquid equilibrium. A key parameter is thus the Minimum Miscibility Temperature (MMT), i.e. the temperature above which ethanol and gasoil become completely miscible. In fact, commercial gasoils do not constitute a monolithic product but display in the contrary a large span of compositions that influence the stability of these blends. In this context, the LRGP laboratory (Laboratoire Re´actions et Ge´nie des Proce´de´s) has undertaken an investigation program intended to understand the factors underlying the stability of ethanol/gasoil blends. The approach is based on the calculation of the liquid-liquid phase diagrams formed by anhydrous ethanol and a mixture of various hydrocarbons representative of the diesel oil pool using the group contribution concept. Indeed, for correlating thermodynamic properties, it is often convenient to regard a molecule as an aggregate of functional groups; as a result, some thermodynamic properties (heat of mixing, activity coefficients) can be calculated by summing group contributions. In this study, the universal quasichemical functional group activity coefficient (UNIFAC) method has been employed as it appears to be particularly useful for making reasonable estimates for the studied non ideal mixtures for which data are sparse or totally absent. In any group-contribution method, the basic idea is that whereas there are thousands of chemical compounds of interest in chemical technology, the number of functional groups that constitute these compounds is much smaller. Therefore, if we assume that a physical property of a fluid is the sum of contributions made by the molecule’s functional groups, we obtain a possible technique for correlating the properties of a very large number of fluids in terms of a much smaller number of parameters that characterize the contributions of individual groups. This paper shows the large influence exerted by the paraffinic, aromatic and naphthenic character of the gasoil but also the sulfur content of the fossil fraction on the shape of the liquid-liquid phase diagram and on the value of the minimum miscibility temperature.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yiping Guo ◽  
Weiyong Zhu ◽  
Guoting Li ◽  
Xiaomin Wang ◽  
Lingfeng Zhu

The convenient and feasible pretreatment method of alkali treatment is very common in the degradation process of wheat straw. However, its utilization in the pretreatment of wheat straw as alternative adsorbents for aqueous heavy metals remediation is rarely reported. The present study investigated the removal efficiency of Cu(II) ions using wheat straw with alkali pretreatment. The condition of alkali treatment on wheat straw was optimized with the adsorption capacity of Cu(II) as indicator using single-factor experiments. The influences of wheat straw dosages, pH values, contact time, and temperatures on adsorption performance for both untreated wheat straw (UWS) and alkali-treated wheat straw (AWS) were investigated. Results showed that the relatively large removal rate of Cu(II) could be obtained, and chemical behavior occurred during the adsorption process. Characteristic analysis found that the major function of alkali treatment to wheat straw was to introduce the hydroxy group, which resulted in the increase of -C-O- group. Although the adsorption capacity is not as high as the one of ligands supported adsorbents, the method is easy to operate and has a wide range of application; at the same time, it could realize both purposes of treating heavy metal pollution and solid wastes.


2015 ◽  
Vol 15 (3) ◽  
pp. 649-655 ◽  
Author(s):  
Husam Faiz Haddad ◽  
Azhagapillai Prabhu ◽  
Ahmed Al Shoaibi ◽  
Chandrasekar Srinivasakannan

The adsorption of benzene, toluene and xylene (BTX) was investigated covering different types of commercially available activated carbons with varied surface area and surface functional groups. The physico-chemical properties were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, Fourier transform infrared (FTIR) spectroscopy and the Boehm titration method. Experiments to assess the adsorption isotherms and kinetics of adsorption were performed and the results are presented. An increase in the surface acid functional groups was found to decrease the adsorption capacity, with the highest adsorption capacity corresponding to carbon with lowest acid functionality.


2012 ◽  
Vol 610-613 ◽  
pp. 1540-1545
Author(s):  
Rui Yu Jia ◽  
You Hong Lin ◽  
Wei Zhang

Using modified flavedo as the adsorbent , the sorption process of Zn2+Superscript text by modified flavedo in wastewater containing heavymetals was studied. The effects of various factors in Zn2+Superscript text adsorption , such as adsorbtion time , temperature , pH value , initial Zn2+ concentration , and pretreatment,were analyzed. The results showed that the pretreatment of modified raised adsorption capacity , and the adsorption capacity was suitable for wastewater with a wide range of pH values. The rate of removal of Zn2+Superscript text reached 98% when the Zn2+ initial concentration was under 100mg/L. The optimal conditions for Zn2 + adsorptionSuperscript text by Modified orange peel were a wastewater pH value of 5.5 , at 25 °C, an adsorption time of 60 minutes , and a dosage of modacrylic flavedo of 2 g/ L.


Author(s):  
Romain Privat ◽  
Jean-Noe¨l Jaubert ◽  
Michel Molie`re

In recent years, the quest for sustainable primary energies has increased the potential interest of biogenic/fossil fuels mixes. As an example, ethanol is used as a gasoline extender to both partly substitute hydrocarbons and increase octane number while improving vehicle emissions. In a previous paper (GT2010-22126), it has been shown that ethanol and gasoil are able to blend and form homogeneous solutions only in limited proportion ranges, due to their markedly different physical and chemical properties. However the incorporation of small amounts of water in ethanol dramatically decreases this already narrow miscibility domain. Indeed, in function of the temperature, such ternary mixtures often give rise to liquid-liquid equilibria i.e. to two separated phases that are respectively lipophilic and hydrophilic. A key parameter is thus the Minimum Miscibility Temperature, i.e. the temperature above which ethanol, water and gasoil become completely miscible. On another hand, commercial gasoils do not constitute a single product but display worldwide a large range of compositions that influence the stability of these ternary blends. In this context, an investigation program intended to characterize and predict the stability of ternary ethanol + water + gasoil blends has been carried out by the LRGP laboratory (Laboratoire Re´actions et Ge´nie des Proce´de´s). The approach is based on a thermodynamical, theoretical calculation of the liquid-liquid phase diagrams formed by ethanol, water and a mixture of various hydrocarbons representative of the diesel oil pool using the group-contribution concept. The basic idea is that whereas there are thousands of chemical compounds, the number of functional groups that constitute these compounds is much smaller. The work relies on the experimentally verified theory that a physical property of a fluid can be expressed as the sum of contributions made by molecule’s functional groups, which allows correlating the properties of a very large number of substances in terms of a much smaller number of parameters that represent the contributions of individual groups. This work shows the huge influence exerted by the water content of ethanol on the shape of the liquid-liquid phase diagram and on the value of the Minimum Miscibility Temperature (MMT). As seen in our previous paper, the paraffinic, aromatic or naphthenic character of the fossil fraction, also considerably influences the value of the MMT. Calculations were performed with a water content varying between 1 and 10%. This study concludes that the MMT expressed in kelvins is generally multiplied by two when the water content rises from 1 to 10%.


2018 ◽  
Vol 69 (5) ◽  
pp. 1233-1239
Author(s):  
Raluca Madalina Senin ◽  
Ion Ion ◽  
Ovidiu Oprea ◽  
Rusandica Stoica ◽  
Rodica Ganea ◽  
...  

In this study, non-irradiated and weathered multiwalled carbon nanotubes (MWCNTs) obtained through irradiation, were studied as adsorbents for BPA, both nanomaterials being characterized before and after the adsorption process. The objectives of our investigation were to compare the characteristics of non-irradiated and irradiated MWCNTs, to evaluate the adsorption capacity of BPA by pristine and irradiated MWCNTs and to determine the variation of the kinetic, sorption and thermodynamic parameters during sorption process using both sorbents.


2021 ◽  
Vol 13 (15) ◽  
pp. 8552
Author(s):  
Vahid Alimohammadi ◽  
Mehdi Maghfouri ◽  
Delaram Nourmohammadi ◽  
Pejman Azarsa ◽  
Rishi Gupta ◽  
...  

Clean water is a vital need for all living creatures during their lifespan. However, contaminated stormwater is a major issue around the globe. A wide range of contaminants, including heavy metals, organic and inorganic impurities, has been discovered in stormwater. Some commonly utilized methods, such as biological, physical and chemical procedures, have been considered to overcome these issues. However, these current approaches result in moderate to low contaminant removal efficiencies for certain classes of contaminants. Of late, filtration and adsorption processes have become more featured in permeable concretes (PCs) for the treatment of stormwater. As nanoparticles have vast potential and unique characterizations, such as a higher surface area to cure polluted stormwater, employing them to improve permeable concretes’ capabilities in stormwater treatment systems is an effective way to increase filtration and adsorption mechanisms. The present study reviews the removal rate of different stormwater contaminants such as heavy metals, organic and other pollutants using nanoparticle-improved PC. The application of different kinds of nanomaterials in PC as porous media to investigate their influences on the properties of PC, including the permeability rate, compressive strength, adsorption capacity and mix design of such concrete, was also studied. The findings of this review show that different types of nanomaterials improve the removal efficiency, compressive strength and adsorption capacity and decrease the infiltration rate of PC during the stormwater treatment process. With regard to the lack of comprehensive investigation concerning the use of nanomaterials in PC to treat polluted stormwater runoff, this study reviews 242 published articles on the removal rate of different stormwater contaminants by using PC improved with nanoparticles.


2021 ◽  
Vol 2 (2) ◽  
pp. 245-256
Author(s):  
Priyanka R. Sharma ◽  
Sunil K. Sharma ◽  
Marc Nolan ◽  
Wenqi Li ◽  
Lakshta Kundal ◽  
...  

Raw wood was subjected to sequential oxidation to produce 2,3,6-tricarboxycellulose (TCC) nanofibers with a high surficial charge of 1.14 mmol/g in the form of carboxylate groups. Three oxidation steps, including nitro-oxidation, periodate, and sodium chlorite oxidation, were successfully applied to generate TCC nanofibers from raw wood. The morphology of extracted TCC nanofibers measured using TEM and AFM indicated the average length, width, and thickness were in the range of 750 ± 110, 4.5 ± 1.8, and 1.23 nm, respectively. Due to high negative surficial charges on TCC, it was studied for its absorption capabilities against Pb2+ ions. The remediation results indicated that a low concentration of TCC nanofibers (0.02 wt%) was able to remove a wide range of Pb2+ ion impurities from 5–250 ppm with an efficiency between 709–99%, whereby the maximum adsorption capacity (Qm) was 1569 mg/g with R2 0.69531 calculated from Langmuir fitting. It was observed that the high adsorption capacity of TCC nanofibers was due to the collective effect of adsorption and precipitation confirmed by the FTIR and SEM/EDS analysis. The high carboxylate content and fiber morphology of TCC has enabled it as an excellent substrate to remove Pb2+ ions impurities.


Sign in / Sign up

Export Citation Format

Share Document