scholarly journals Chemically Diverse and Biologically Active Secondary Metabolites from Marine Phylum chlorophyta

Marine Drugs ◽  
2020 ◽  
Vol 18 (10) ◽  
pp. 493
Author(s):  
Sayed Asmat Ali Shah ◽  
Syed Shams ul Hassan ◽  
Simona Bungau ◽  
Yongsheng Si ◽  
Haiwei Xu ◽  
...  

For a long time, algal chemistry from terrestrial to marine or freshwater bodies, especially chlorophytes, has fascinated numerous investigators to develop new drugs in the nutraceutical and pharmaceutical industries. As such, chlorophytes comprise a diverse structural class of secondary metabolites, having functional groups that are specific to a particular source. All bioactive compounds of chlorophyte are of great interest due to their supplemental/nutritional/pharmacological activities. In this review, a detailed description of the chemical diversity of compounds encompassing alkaloids, terpenes, steroids, fatty acids and glycerides, their subclasses and their structures are discussed. These promising natural products have efficiency in developing new drugs necessary in the treatment of various deadly pathologies (cancer, HIV, SARS-CoV-2, several inflammations, etc.). Marine chlorophyte, therefore, is portrayed as a pivotal treasure in the case of drugs having marine provenience. It is a domain of research expected to probe novel pharmaceutically or nutraceutically important secondary metabolites resulting from marine Chlorophyta. In this regard, our review aims to compile the isolated secondary metabolites having diverse chemical structures from chlorophytes (like Caulerpa ssp., Ulva ssp., Tydemania ssp., Penicillus ssp., Codium ssp., Capsosiphon ssp., Avrainvillea ssp.), their biological properties, applications and possible mode of action.

Author(s):  
Keisham S. Singh ◽  
Supriya Tilvi

: The marine sponges of the genus Oceanapia sp. is comprised of more than 50 species and are distributed in the seas around the tropical and subtropical regions. They are mainly found in the northern Indian oceans, Japan, and the south pacific coast. They are highly colored and known to be a rich source of various secondary metabolites, particularly, alkaloids. Several other secondary metabolites were also reported from this genus which include terpenes, sphingolipids, ceramides, cerebrosides, acetylenic acids, and thiocyanatins, etc. Many of these compounds isolated from this genus exhibited various biological properties including anticancer, antimicrobial, anti-HIV, ichthyotoxicity and nematocidal activities. Although several secondary metabolites have been reported from this genus, a dedicated review of the chemicals and biological activities of this genus is so far lacking. Keeping this in mind this review describes the various chemical entities isolated from the sponges of the genus Oceanapia detailing their chemical structures along with their reported biological properties.


Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 122
Author(s):  
Yeon-Ju Lee ◽  
Yeonwoo Cho ◽  
Huynh Nguyen Khanh Tran

Sponges are prolific sources of various natural products that have provided the chemical scaffolds for new drugs. The sponges of the genus Petrosia inhabit various regions and contain a variety of biologically active natural products such as polyacetylenes, sterols, meroterpenoids, and alkaloids. This review aims to provide a comprehensive summary of the chemical structures and biological activities of Petrosia metabolites covering a period of more than four decades (between 1978 and 2020). It is also described in this review that the major groups of metabolites from members of the genus Petrosia differed with latitude. The polyacetylenes were identified to be the most predominant metabolites in Petrosia sponges in temperate regions, while tropical Petrosia species were sources of a greater variety of metabolites, such as meroterpenoids, sterols, polyacetylenes, and alkaloids.


2020 ◽  
Vol 26 (41) ◽  
pp. 7337-7371 ◽  
Author(s):  
Maria A. Chiacchio ◽  
Giuseppe Lanza ◽  
Ugo Chiacchio ◽  
Salvatore V. Giofrè ◽  
Roberto Romeo ◽  
...  

: Heterocyclic compounds represent a significant target for anti-cancer research and drug discovery, due to their structural and chemical diversity. Oxazoles, with oxygen and nitrogen atoms present in the core structure, enable various types of interactions with different enzymes and receptors, favoring the discovery of new drugs. Aim of this review is to describe the most recent reports on the use of oxazole-based compounds in anticancer research, with reference to the newly discovered iso/oxazole-based drugs, to their synthesis and to the evaluation of the most biologically active derivatives. The corresponding dehydrogenated derivatives, i.e. iso/oxazolines and iso/oxazolidines, are also reported.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Muthuirulan Pushpanathan ◽  
Paramasamy Gunasekaran ◽  
Jeyaprakash Rajendhran

Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 965
Author(s):  
Renan Campos e Silva ◽  
Jamile S. da Costa ◽  
Raphael O. de Figueiredo ◽  
William N. Setzer ◽  
Joyce Kelly R. da Silva ◽  
...  

Psidium (Myrtaceae) comprises approximately 266 species, distributed in tropical and subtropical regions of the world. Psidium taxa have great ecological, economic, and medicinal relevance due to their essential oils’ chemical diversity and biological potential. This review reports 18 Psidium species growing around the world and the chemical and biological properties of their essential oils. Chemically, 110 oil records are reported with significant variability of volatile constituents, according to their seasonality and collection sites. Monoterpenes and sesquiterpenes with acyclic (C10 and C15), p-menthane, pinane, bisabolane, germacrane, caryophyllane, cadinane, and aromadendrane skeleton-types, were the primary constituents. The essential oils showed various biological activities, including antioxidant, antifungal, antibacterial, phytotoxic, larvicidal, anti-inflammatory, and cytotoxic properties. This review contributes to the Psidium species rational and economic exploration as natural sources to produce new drugs.


2021 ◽  
Vol 13 (3) ◽  
pp. 11020
Author(s):  
Peter M. EZE ◽  
Ying GAO ◽  
Yang LIU ◽  
Lasse Van GEELEN ◽  
Chika P. EJIKEUGWU ◽  
...  

Extremophilic fungi have received considerable attention recently as new promising sources of biologically active compounds with potential pharmaceutical applications. This study investigated the secondary metabolites of a marine-derived Penicillium ochrochloron isolated from underwater sea sand collected from the North Sea in St. Peter-Ording, Germany. Standard techniques were used for fungal isolation, taxonomic identification, fermentation, extraction, and isolation of fungal secondary metabolites. Chromatographic separation and spectroscopic analyses of the fungal secondary metabolites yielded eight compounds: talumarin A (1), aspergillumarin A (2), andrastin A (3), clavatol (4), 3-acetylphenol (5), methyl 2,5-dihydro-4-hydroxy-5-oxo-3-phenyl-2-furanpropanoate (6), emodin (7) and 2-chloroemodin (8). After co-cultivation with Bacillus subtilis, the fungus was induced to express (-)-striatisporolide A (9). Compound 1 was evaluated for antibacterial activity against Staphylococcus aureus, Acinetobacter baumannii, Mycobacterium smegmatis, and M. tuberculosis, as well as cytotoxicity against THP-1 cells. The compound, however, was not cytotoxic to THP-1 cells and had no antibacterial activity against the microorganisms tested. The compounds isolated from P. ochrochloron in this study are well-known compounds with a wide range of beneficial biological properties that can be explored for pharmaceutical, agricultural, or industrial applications. This study highlights the bioprospecting potential of marine fungi and confirms co-cultivation as a useful strategy for the discovery of new natural products.


Author(s):  
Moumita Choudhury ◽  
Kalishankar Mukherjee ◽  
Arnab De ◽  
Amalesh Samanta ◽  
Amit Roy

Secondary metabolites of plants are important resources for development of new drugs. Mangrove plants are very well known sources of wide variety of secondary metabolites. Many of these secondary metabolites from mangroves have been found to possess significant biological activities where human health is concerned. Avicennia alba Blume is one such mangrove plant with reports of having many such secondary metabolites of clinical and commercial interests. Aim: To evaluate antimicrobial activity potential of A. alba wood extract and to isolate new bioactive constituent(s) responsible for such biological activity. Methodology: Preliminary screenings of antimicrobial activities in different organic solvent extracts of A. alba wood tissue were done by TLC-bioautography method and phytochemical nature of the antimicrobial constituent(s) in the extracts have been studied. One compound exhibiting significant antimicrobial activity, named as Albain 1, has been isolated. MIC value has been determined for Albain 1. The purity and structure of Albain 1 have been determined by HPLC, 1H NMR, FTIR and HRMS etc. analysis. Results: 1H NMR, FTIR and HRMS analysis have found out that the isolated compound Albain 1 is a triterpene and the molecular formula is C30H48O4. It has exhibited remarkable antimicrobial activity against Bacillus cereus, Bacillus polymyxa, Bacillus pumilas (MIC 125 μg / ml). Conclusion: The observed antimicrobial activity of the isolated fraction of A. alba offer great potentials in pharmaceutical industries.


Author(s):  
Sanrda Kim Tiam ◽  
Muriel Gugger ◽  
Justine Demay ◽  
Severine Le Manach ◽  
Charlotte Duval ◽  
...  

Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with diverse chemical structures and potent biological activities and toxicities. The chemical identification of these compounds remains a major bottleneck. Strategies that can prioritize the most prolific strains and novel compounds are of great interest. Here, we combine chemical analysis and genomics to investigate the chemodiversity of secondary metabolites based on their pattern of distribution within some cyanobacteria. Planktothrix being a cyanobacterial genus known to form blooms worldwide and to produce a broad spectrum of toxins and other bioactive compounds, we applied this combined approach on four closely related strains of Planktothrix. The chemical diversity of the metabolites produced by the four strains was evaluated using an untargeted metabolomics strategy with high-resolution LC-MS. Metabolite profiles were correlated with the potential of metabolite production identified by genomics for the different strains. Although, the Planktothrix strains present a global similarity in term biosynthetic cluster gene for microcystin, aeruginosin and prenylagaramide for example, we found remarkable strain-specific chemo-diversity. Only few of the chemical features were common to the four studied strains. Additionally, the MS/MS data were analyzed using Global Natural Products Social Molecular Networking (GNPS) to identify molecular families of the same biosynthetic origin. In conclusion, we present an efficient integrative strategy for elucidating the chemical diversity of a given genus and link the data obtained from analytical chemistry to biosynthetic genes of cyanobacteria.


2018 ◽  
Vol 73 (3) ◽  
pp. 83-95
Author(s):  
KATARZYNA OLESIŃSKA

Sesquiterpene lactones are secondary metabolites commonly found in higher plants as well as mosses, lichens, and fungi. Currently, over 5000 of such compounds have been identified with a majority isolated from Asteraceae plants. They are characterised by different chemical structures associated with the presence of various carbon pathways and functional groups, which exert an impact on their pharmacological activity. These colourless substances are soluble in fats, alcohols, or water. They are often bitter ingredients regarded as bitter compounds. They are accumulated mainly in leaves, flower parts and seeds; less frequently, they are present in roots. Sesquiterpene lactones exhibit multidirectional biological activity: some of them have anticancer, anti-inflammatory, antidiabetic, analgesic, antiparasitic, antifungal, and bacteriostatic effects. Therefore, high hopes are placed on the medical and pharmaceutical use of these substances. Lactone compounds are also regarded as a potential source of new active substances used in agriculture to combat plant pathogens


Author(s):  
MANJULA K SAXENA ◽  
NEERJA SINGH ◽  
SUDHIR KUMAR ◽  
DOBHAL MP ◽  
SOUMANA DATTA

Several biologically active secondary metabolites from aquatic plants have been extracted and identified using modern instrumental BioTechniques and used in various ways as flavors, food, additives, coloring agents, nutraceuticals, cosmetics, and also as unique source of pharma industries for the discovery or development of new drugs. From algae to aquatic macrophytes belonging to various categories, aquatic plants produce a variety of compounds such as polyketides, peptides, alkaloids, flavonoids, phenolic compounds, terpenes, steroids, quinones, tannins, coumarins, and essential oils commercially involving in antibiotic, antiviral, antioxidant, antifouling, anti-inflammatory, anticancer, cytotoxic, and antimitotic activities; thus making them a rich source of medicinal compounds. Moreover, they are comprehensively used in human therapy, veterinary, agriculture, scientific research, and in countless areas. Importantly these chemicals are exercised for developing new antimicrobial and cancer drugs. Furthermore, antioxidant molecules in aquatic plants and seaweeds have recently been acknowledged. This review contains a consolidated contemporary document consisting of entire knowledge available on pharmaceutical products of aquatic plants and highlights major differences among secondary metabolites found in aquatic (algae) and terrestrial plants.


Sign in / Sign up

Export Citation Format

Share Document