scholarly journals Biomarker Potential of Plasma MicroRNA-150-5p in Prostate Cancer

Medicina ◽  
2019 ◽  
Vol 55 (9) ◽  
pp. 564 ◽  
Author(s):  
Ionut Andrei Paunescu ◽  
Razvan Bardan ◽  
Anca Marcu ◽  
Diana Nitusca ◽  
Alis Dema ◽  
...  

Background and Objectives: Over decades, prostate cancer (PCa) has become one of the leading causes of cancer mortality in men. Extensive evidence exists that microRNAs (miRNAs or miRs) are key players in PCa and a new class of non-invasive cancer biomarkers. Materials and Methods: We performed miRNA profiling in plasma and tissues of PCa patients and attempted the validation of candidate individual miRs as biomarkers. Results: The comparison of tissue and plasma profiling results revealed five commonly dysregulated miRs, namely, miR-130a-3p, miR-145-5p, miR-148a-3p, miR-150-5p, and miR-365a-3p, of which only three show concordant changes—miR-130a-3p and miR-150-5p were downregulated and miR-148a-3p was upregulated in both tissue and plasma samples, respectively. MiR-150-5p was validated as significantly downregulated in both plasma and tissue cancer samples, with a fold change of −2.697 (p < 0.001), and −1.693 (p = 0.035), respectively. ROC analysis showed an area under the curve (AUC) of 0.817 (95% CI: 0.680–0.995) for plasma samples and 0.809 (95% CI: 0.616–1.001) for tissue samples. Conclusions: We provide data indicating that miR-150-5p plasma variations in PCa patients are associated with concordant changes in prostate cancer tissues; however, given the heterogeneous nature of previous findings of miR-150-5p expression in PCa cells, additional future studies of a larger sample size are warranted in order to confirm the biomarker potential and role of miRNA-150-5p in PCa biology.

2018 ◽  
Vol 13 (1) ◽  
pp. 155798831881690 ◽  
Author(s):  
Binshuai Wang ◽  
Mingyuan Liu ◽  
Yimeng Song ◽  
Changying Li ◽  
Shudong Zhang ◽  
...  

KLF2, a member of the Kruppel-like factor (KLF) family, is thought to be a tumor suppressor in many kinds of malignant tumors. Its functions in prostate cancer (PCa) are unknown. This study aimed to explore the role of KLF2 in the migration and invasion of PCa cells. The expression of KLF2 was measured by immunohistochemistry in PCa tissues and in paired non-tumor tissues. KLF2 and MMP2 expression in cells was measured by Western blot and RT-qPCR. Adenoviruses and siRNAs were used in cell function tests to investigate the role of KLF2 in regulating MMP2. Interactions between KLF2 and MMP2 were analyzed by a luciferase activity assay. The present study, for the first time, identified that KLF2 was downregulated both in PCa clinical tissue samples and in cancer cell lines. The overexpression of KLF2 inhibited the migration and invasion of PCa cells via the suppression of MMP2.This study demonstrates that KLF2 might act as a tumor suppressor gene in PCa and that the pharmaceutical upregulation of KLF2 may be a potential approach for treatment.


2020 ◽  
Vol 21 (24) ◽  
pp. 9472
Author(s):  
María Alarcón ◽  
Wilda Olivares ◽  
Miguel Córdova-Delgado ◽  
Matías Muñoz-Medel ◽  
Tomas de Mayo ◽  
...  

Reprimo-like (RPRML) is an uncharacterized member of the Reprimo gene family. Here, we evaluated the role of RPRML and whether its regulation by DNA methylation is a potential non-invasive biomarker of gastric cancer. RPRML expression was evaluated by immunohistochemistry in 90 patients with gastric cancer and associated with clinicopathologic characteristics and outcomes. The role of RPRML in cancer biology was investigated in vitro, through RPRML ectopic overexpression. Functional experiments included colony formation, soft agar, MTS, and Ki67 immunofluorescence assays. DNA methylation-mediated silencing was evaluated by the 5-azacytidine assay and direct bisulfite sequencing. Non-invasive detection of circulating methylated RPRML DNA was assessed in 25 gastric cancer cases and 25 age- and sex-balanced cancer-free controls by the MethyLight assay. Downregulation of RPRML protein expression was associated with poor overall survival in advanced gastric cancer. RPRML overexpression significantly inhibited clonogenic capacity, anchorage-independent growth, and proliferation in vitro. Circulating methylated RPRML DNA distinguished patients with gastric cancer from controls with an area under the curve of 0.726. The in vitro overexpression results and the poor patient survival associated with lower RPRML levels suggest that RPRML plays a tumor-suppressive role in the stomach. Circulating methylated RPRML DNA may serve as a biomarker for the non-invasive detection of gastric cancer.


Folia Medica ◽  
2021 ◽  
Vol 63 (3) ◽  
pp. 355-364
Author(s):  
Silva Garo Kyurkchiyan ◽  
Todor Miroslavov Popov ◽  
Felitsiya Shakola ◽  
Julian Rangachev ◽  
Vanyo Ivanov Mitev ◽  
...  

Introduction: Recently, miRNAs have become popular molecules used as non-invasive biomarkers in cancer diseases. Aim: The aim of the study was to explore the expression of four miRNAs isoforms: miR-31-3p, miR-196a-5p, miR-210-3p and miR-424-5p in plasma and tissue samples from patients with advanced laryngeal squamous cell carcinoma (LSCC) and healthy controls. Materials and methods: Fresh-frozen tumour and normal laryngeal tissue as well as plasma samples were obtained from 22 patients diagnosed with advanced LSCC. The control group included plasma samples from 21 cancer-free volunteers. Total RNA (including miRNAs) extraction, reverse transcription and real time qPCR were the laboratory techniques used in the study. The obtained results were analyzed using SPSS software v. 23. Results: We found that miR-31-3p, miR-196a-5p, and miR-210-3p levels were significantly elevated in laryngeal tumour tissue, but only the levels of miR-31-3p and miR-196a-5p were significantly upregulated in the plasma LSCC target group. Positive correlation was obtained for miR-31-3p (rs=0.443, p=0.039) and miR-196a-5p (rs=0.548; p=0.008) between plasma and adjacent tumour tissue LSCC samples. ROC analyses were used to evaluate the discriminative power of both miRNAs alone and in combination. The combination of miR-31-3p and miR-196a-5p showed best results with AUC=0.978 (95% CI: 0.945&ndash;1.000, p<0.001) with 100% sensitivity and 81% specificity at cut-off: RQ=2.99. Conclusions: Based on this miR-31-3p and miR-196a-5p are proposed as potential biomarkers for validation in larger LSCC group and could be included in a non-invasive miRNAs set for detection of advanced LSCC.


2022 ◽  
Vol 12 ◽  
Author(s):  
P. Porras-Quesada ◽  
JM. González-Cabezuelo ◽  
V. Sánchez-Conde ◽  
I. Puche-Sanz ◽  
V. Arenas-Rodríguez ◽  
...  

Prostate Cancer (PC) is commonly known as one of the most frequent tumors among males. A significant problem of this tumor is that in early stages most of the cases course as indolent forms, so an active surveillance will anticipate the appearance of aggressive stages. One of the main strategies in medical and biomedical research is to find non-invasive biomarkers for improving monitoring and performing a more precise follow-up of diseases like PC. Here we report the relevant role of IGF2 and miR-93-5p as non-invasive biomarker for PC. This event could improve current medical strategies in PC.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2109
Author(s):  
Skandha S. Sanagala ◽  
Andrew Nicolaides ◽  
Suneet K. Gupta ◽  
Vijaya K. Koppula ◽  
Luca Saba ◽  
...  

Background and Purpose: Only 1–2% of the internal carotid artery asymptomatic plaques are unstable as a result of >80% stenosis. Thus, unnecessary efforts can be saved if these plaques can be characterized and classified into symptomatic and asymptomatic using non-invasive B-mode ultrasound. Earlier plaque tissue characterization (PTC) methods were machine learning (ML)-based, which used hand-crafted features that yielded lower accuracy and unreliability. The proposed study shows the role of transfer learning (TL)-based deep learning models for PTC. Methods: As pertained weights were used in the supercomputer framework, we hypothesize that transfer learning (TL) provides improved performance compared with deep learning. We applied 11 kinds of artificial intelligence (AI) models, 10 of them were augmented and optimized using TL approaches—a class of Atheromatic™ 2.0 TL (AtheroPoint™, Roseville, CA, USA) that consisted of (i–ii) Visual Geometric Group-16, 19 (VGG16, 19); (iii) Inception V3 (IV3); (iv–v) DenseNet121, 169; (vi) XceptionNet; (vii) ResNet50; (viii) MobileNet; (ix) AlexNet; (x) SqueezeNet; and one DL-based (xi) SuriNet-derived from UNet. We benchmark 11 AI models against our earlier deep convolutional neural network (DCNN) model. Results: The best performing TL was MobileNet, with accuracy and area-under-the-curve (AUC) pairs of 96.10 ± 3% and 0.961 (p < 0.0001), respectively. In DL, DCNN was comparable to SuriNet, with an accuracy of 95.66% and 92.7 ± 5.66%, and an AUC of 0.956 (p < 0.0001) and 0.927 (p < 0.0001), respectively. We validated the performance of the AI architectures with established biomarkers such as greyscale median (GSM), fractal dimension (FD), higher-order spectra (HOS), and visual heatmaps. We benchmarked against previously developed Atheromatic™ 1.0 ML and showed an improvement of 12.9%. Conclusions: TL is a powerful AI tool for PTC into symptomatic and asymptomatic plaques.


2021 ◽  
pp. 00139-2021
Author(s):  
Wadah Ibrahim ◽  
Rebecca L. Cordell ◽  
Michael J. Wilde ◽  
Matthew Richardson ◽  
Liesl Carr ◽  
...  

BackgroundThe ongoing COVID-19 pandemic has claimed over two and a half million lives worldwide so far. SARS-CoV-2 infection is perceived to be seasonally recurrent and a rapid non-invasive biomarker to accurately diagnose patients early-on in their disease course will be necessary to meet the operational demands for COVID-19 control in the coming years.ObjectiveTo evaluate the role of exhaled breath volatile biomarkers in identifying patients with suspected or confirmed COVID-19 infection, based on their underlying PCR status and clinical probability.MethodsA prospective, real-world, observational study recruiting adult patients with suspected or confirmed COVID-19 infection. Breath samples were collected using a standard breath collection bag, modified with appropriate filters to comply with local infection control recommendations and samples were analysed using gas chromatography-mass spectrometry (TD-GC-MS).Findings81 patients were recruited between April 29th to July 10th, 2020, of whom 52/81 (64%) tested positive for COVID-19 by RT-PCR. A regression analysis identified a set of seven exhaled breath features (benzaldehyde, 1-propanol, 3, 6-methylundecane, camphene, beta-cubebene, Iodobenzene, and an unidentified compound) that separated PCR positive patients with an area under the curve (AUC): 0.836, sensitivity: 68%, specificity: 85%.ConclusionsGC-MS detected exhaled breath biomarkers were able to identify PCR positive COVID-19 patients. External replication of these compounds is warranted to validate these results.


Author(s):  
Yang Yang ◽  
Chenguang Shen ◽  
Jinxiu Li ◽  
Jing Yuan ◽  
Minghui Yang ◽  
...  

The outbreak of Coronavirus Disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, December 2019, and continuously poses a serious threat to public health. Our previous study has shown that cytokine storm occurred during SARS-CoV-2 infection, while the detailed role of cytokines in the disease severity and progression remained unclear due to the limited case number. In this study, we examined 48 cytokines in the plasma samples from 53 COVID-19 cases, among whom 34 were severe cases, and the others moderate. Results showed that 14 cytokines were significantly elevated upon admission in COVID-19 cases. Moreover, IP-10, MCP-3, and IL-1ra were significantly higher in severe cases, and highly associated with the PaO2/FaO2 and Murray score. Furthermore, the three cytokines were independent predictors for the progression of COVID-19, and the combination of IP-10, MCP-3 and IL-1ra showed the biggest area under the curve (AUC) of the receiver-operating characteristics (ROC) calculations. Serial detection of IP-10, MCP-3 and IL-1ra in 14 severe cases showed that the continuous high levels of these cytokines were associated with disease deterioration and fatal outcome. In conclusion, we report biomarkers that closely associated with disease severity and outcome of COVID-19. These findings add to our understanding of the immunopathologic mechanisms of SARS-CoV-2 infection, providing novel therapeutic targets and strategy.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhenkun Ma ◽  
Ye Gao ◽  
Wei Liu ◽  
Long Zheng ◽  
Ben Jin ◽  
...  

CD82 acts as a tumor suppressor in a series of steps in malignant progression. Here, we identified a novel function of CD82 on posttranslational regulating E-cadherin in prostate cancer. In our study, the declined expression of CD82 was verified in prostate cancer tissues and cell lines compared with normal tissue and cell lines. Functionally, CD82 inhibited cell migration and E-cadherin cleavage from the cell membrane in prostate cancer cell. Further study proved that a disintegrin and metalloproteinase ADAM17 as an executor of E-cadherin cleavage mediated the inhibitory regulation of CD82 in E-cadherin shedding in prostate cancer. Specifically, CD82 interacted with ADAM17 and inhibited its metalloprotease activity, which led to the descent of E-cadherin shedding. These results show a nuanced but important role of CD82 in nontranscriptional regulation of E-cadherin, which may help to understand the intricate regulation of dysfunctional adhesion molecule in cancer progression.


2021 ◽  
Vol 22 (18) ◽  
pp. 9971
Author(s):  
Matteo Ferro ◽  
Ottavio de Cobelli ◽  
Mihai Dorin Vartolomei ◽  
Giuseppe Lucarelli ◽  
Felice Crocetto ◽  
...  

Radiomics and genomics represent two of the most promising fields of cancer research, designed to improve the risk stratification and disease management of patients with prostate cancer (PCa). Radiomics involves a conversion of imaging derivate quantitative features using manual or automated algorithms, enhancing existing data through mathematical analysis. This could increase the clinical value in PCa management. To extract features from imaging methods such as magnetic resonance imaging (MRI), the empiric nature of the analysis using machine learning and artificial intelligence could help make the best clinical decisions. Genomics information can be explained or decoded by radiomics. The development of methodologies can create more-efficient predictive models and can better characterize the molecular features of PCa. Additionally, the identification of new imaging biomarkers can overcome the known heterogeneity of PCa, by non-invasive radiological assessment of the whole specific organ. In the future, the validation of recent findings, in large, randomized cohorts of PCa patients, can establish the role of radiogenomics. Briefly, we aimed to review the current literature of highly quantitative and qualitative results from well-designed studies for the diagnoses, treatment, and follow-up of prostate cancer, based on radiomics, genomics and radiogenomics research.


Author(s):  
Shun-tan Huang ◽  
Ze-zhen Liu ◽  
Fu-Neng Jiang ◽  
Hui-chan He ◽  
Wei-De Zhong

Abstract Objective: To compare the expression levels of Defective In Cullin Neddylation 1 Domain Containing 1 oncogene in prostate cancer tissues and normal prostate tissues, to explored its effect on cancerous  cells, and to investigate its underlying mechanisms on such cells in vitro. Methods: The cross-sectional study was conducted at Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics from Jan 03,2017 to Nov 05,2018, and comprised prostate tissue samples on which immunohistochemistry was used to detect the expression of Defective In Cullin Neddylation 1 Domain Containing 1 oncogene. Short hairpin ribonucleic acid expression plasmid targeting the oncogene was constructed and transferred into prostate cance cell line DU145. The roles of the oncogene in prostate cancer progression were confirmed in vitro. The expression of vimentin and epithelial cadherin influenced by the oncogene were detected using Western blot. Data was analysed using SPSS 24. Results: Of the 80 samples, 3(3.75%) were normal prostate tissues, 7(8.75%) adjacent normal prostate tissues, 20(25%) hyperplasia, and 50(62.5%) prostate cancer tissues. Defective In Cullin Neddylation 1 Domain Containing 1 oncogene expression in prostate cancerous tissues was significantly associated with high Gleason score (p<0.001), metastasis (p<0.05) and pathological stage (p<0.001). The oncogene was found to be an independent prognostic factor for disease-free survival of prostate cancer patients (p=0.0108). In vitro analysis confirmed the tumour promotive role of the oncogene through cell proliferation, invasion and migration assays. Continuous...


Sign in / Sign up

Export Citation Format

Share Document