scholarly journals Study on Cross-Coupled-Based Sensing Circuits for Nonvolatile Flip-Flops Operating in Near/Subthreshold Voltage Region

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1177
Author(s):  
Taehui Na

To date, most studies focus on complex designs to realize offset cancelation characteristics in nonvolatile flip-flops (NV-FFs). However, complex designs using switches are ineffective for offset cancelation in the near/subthreshold voltage region because switches become critical contributors to the offset voltage. To address this problem, this paper proposes a novel cross-coupled NMOS-based sensing circuit (CCN-SC) capable of improving the restore yield, based on the concept that the simplest is the best, of an NV-FF operating in the near/subthreshold voltage region. Measurement results using a 65 nm test chip demonstrate that with the proposed CCN-SC, the restore yield is increased by more than 25 times at a supply voltage of 0.35 V, compared to that with a cross-coupled inverter-based SC, at the cost of 18× higher power consumption.

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1403 ◽  
Author(s):  
Taehui Na

With technology scaling, achieving a target read yield of resistive nonvolatile memories becomes more difficult due to increased process variation and decreased supply voltage. Recently, an offset-canceling dual-stage sensing circuit (OCDS-SC) has been proposed to improve the read yield by canceling the offset voltage and utilizing a double-sensing-margin structure. In this paper, an offset-canceling zero-sensing-dead-zone sense amplifier (OCZS-SA) combined with the OCDS-SC is proposed to significantly improve the read yield. The OCZS-SA has two major advantages, namely, offset voltage cancellation and a zero sensing dead zone. The Monte Carlo HSPICE simulation results using a 65-nm predictive technology model show that the OCZS-SA achieves 2.1 times smaller offset voltage with a zero sensing dead zone than the conventional latch-type SAs at the cost of an increased area overhead of 1.0% for a subarray size of 128 × 16.


2012 ◽  
Vol 542-543 ◽  
pp. 416-422
Author(s):  
Ming Qiang Qiu ◽  
Na Bai ◽  
Jian Meng ◽  
Jun Ning Chen

The SRAM applied to dynamic voltage scaling systems has a problem that the differential voltage of the bitlines (ΔVBL) increases as the supply voltage rises with the conventional replica bitlines technique, and the increased ΔVBL degrades the SRAM performance and dissipates more power. In this paper, a programmable replica bitlines technique is presented to resolve the problem. With the new technique we acquired bitline discharge time reduction up to 25.3% at the cost of 0.6% area penalty in a 16Kb SRAM. The 16Kb SRAM test chip is fabricated by using 65nm low leakage technology. Testing results show that the maximum operational frequency of the SRAM is improved from 4.3% to 9.5% under the voltage range of 0.8V~1.4V comparing with the conventional one. The operating frequency of the SRAM with proposed technique is from 440MHz at 0.8V to 1.62GHz at1.4V.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 736
Author(s):  
Giorgiana-Catalina Ilie (Chiranu) ◽  
Cristian Tudoran ◽  
Otilia Neagoe ◽  
Florin Draghici ◽  
Gheorghe Brezeanu

In this paper, a nonvolatile switch based on n-type floating-gate transistors is described. The switch states are programmed through the memory cell floating-gate voltage, allowing higher levels than the application supply. Furthermore, due to its nonvolatile nature, the power consumption is reduced. The on-state resistance, which does not depend on the supply voltage, is one of the greatest advantages of this type of switch in comparison to conventional switches. This benefit can be successfully exploited in low-voltage applications. The switch on-resistance can be increased without the need for increasing the switch area. The characteristics of the proposed switch were confirmed by the experimental results obtained on a test chip fabricated in a 0.18 µm EEPROM process. Measured on-resistance values between 45 and 70 Ω were obtained for a floating-gate voltage of 6.2 V and input source levels below 2 V. The required programming voltage was 18 V. The maximum off-state leakage current was measured at 5 nA.


2014 ◽  
Vol 6 (6) ◽  
pp. 573-580 ◽  
Author(s):  
Meng-Ting Hsu ◽  
Po-Hung Chen ◽  
Yao-Yen Lee

In this paper, a low-power CMOS LC voltage-controlled oscillator (VCO) with body-biasing and low-phase noise with Q-enhancement techniques is presented. A self-body biased circuit is introduced that can reduce power consumption. Some derivations of the Q-enhancement and how to improve the phase noise of the circuit are also discussed. This chip is implemented by the Taiwan Semiconductor Manufacture Company 0.18 µm 1P6M process. The measurement results exhibit a tuning range of 14.7% from 4.92 to 5.7 GHz at a supply voltage of 1.4 V. The power consumption of the core circuit and figure of merit are 2.5 mW and −188.6 dBc/Hz. The phase noise is −118 dBc/Hz@1 MHz at an operation frequency of 4.94 GHz.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1078
Author(s):  
Thi Thuy Pham ◽  
Dongmin Kim ◽  
Seo-Hyeong Jeong ◽  
Junghyup Lee ◽  
Donggu Im

This work presents a high efficiency RF-to-DC conversion circuit composed of an LC-CL balun-based Gm-boosting envelope detector, a low noise baseband amplifier, and an offset canceled latch comparator. It was designed to have high sensitivity with low power consumption for wake-up receiver (WuRx) applications. The proposed envelope detector is based on a fully integrated inductively degenerated common-source amplifier with a series gate inductor. The LC-CL balun circuit is merged with the core of the envelope detector by sharing the on-chip gate and source inductors. The proposed technique doubles the transconductance of the input transistor of the envelope detector without any extra power consumption because the gate and source voltage on the input transistor operates in a differential mode. This results in a higher RF-to-DC conversion gain. In order to improve the sensitivity of the wake-up radio, the DC offset of the latch comparator circuit is canceled by controlling the body bias voltage of a pair of differential input transistors through a binary-weighted current source cell. In addition, the hysteresis characteristic is implemented in order to avoid unstable operation by the large noise at the compared signal. The hysteresis window is programmable by changing the channel width of the latch transistor. The low noise baseband amplifier amplifies the output signal of the envelope detector and transfers it into the comparator circuit with low noise. For the 2.4 GHz WuRx, the proposed envelope detector with no external matching components shows the simulated conversion gain of about 16.79 V/V when the input power is around the sensitivity of −60 dBm, and this is 1.7 times higher than that of the conventional envelope detector with the same current and load. The proposed RF-to-DC conversion circuit (WuRx) achieves a sensitivity of about −65.4 dBm based on 45% to 55% duty, dissipating a power of 22 μW from a 1.2 V supply voltage.


2021 ◽  
Vol 11 (9) ◽  
pp. 3934
Author(s):  
Federico Lluesma-Rodríguez ◽  
Temoatzin González ◽  
Sergio Hoyas

One of the most restrictive conditions in ground transportation at high speeds is aerodynamic drag. This is even more problematic when running inside a tunnel, where compressible phenomena such as wave propagation, shock waves, or flow blocking can happen. Considering Evacuated-Tube Trains (ETTs) or hyperloops, these effects appear during the whole route, as they always operate in a closed environment. Then, one of the concerns is the size of the tunnel, as it directly affects the cost of the infrastructure. When the tube size decreases with a constant section of the vehicle, the power consumption increases exponentially, as the Kantrowitz limit is surpassed. This can be mitigated when adding a compressor to the vehicle as a means of propulsion. The turbomachinery increases the pressure of part of the air faced by the vehicle, thus delaying the critical conditions on surrounding flow. With tunnels using a blockage ratio of 0.5 or higher, the reported reduction in the power consumption is 70%. Additionally, the induced pressure in front of the capsule became a negligible effect. The analysis of the flow shows that the compressor can remove the shock waves downstream and thus allows operation above the Kantrowitz limit. Actually, for a vehicle speed of 700 km/h, the case without a compressor reaches critical conditions at a blockage ratio of 0.18, which is a tunnel even smaller than those used for High-Speed Rails (0.23). When aerodynamic propulsion is used, sonic Mach numbers are reached above a blockage ratio of 0.5. A direct effect is that cases with turbomachinery can operate in tunnels with blockage ratios even 2.8 times higher than the non-compressor cases, enabling a considerable reduction in the size of the tunnel without affecting the performance. This work, after conducting bibliographic research, presents the geometry, mesh, and setup. Later, results for the flow without compressor are shown. Finally, it is discussed how the addition of the compressor improves the flow behavior and power consumption of the case.


2020 ◽  
Vol 11 (1) ◽  
pp. 129
Author(s):  
Po-Yu Kuo ◽  
Ming-Hwa Sheu ◽  
Chang-Ming Tsai ◽  
Ming-Yan Tsai ◽  
Jin-Fa Lin

The conventional shift register consists of master and slave (MS) latches with each latch receiving the data from the previous stage. Therefore, the same data are stored in two latches separately. It leads to consuming more electrical power and occupying more layout area, which is not satisfactory to most circuit designers. To solve this issue, a novel cross-latch shift register (CLSR) scheme is proposed. It significantly reduced the number of transistors needed for a 256-bit shifter register by 48.33% as compared with the conventional MS latch design. To further verify its functions, this CLSR was implemented by using TSMC 40 nm CMOS process standard technology. The simulation results reveal that the proposed CLSR reduced the average power consumption by 36%, cut the leakage power by 60.53%, and eliminated layout area by 34.76% at a supply voltage of 0.9 V with an operating frequency of 250 MHz, as compared with the MS latch.


2009 ◽  
Vol 18 (03) ◽  
pp. 487-495 ◽  
Author(s):  
VINCENZO STORNELLI ◽  
GIUSEPPE FERRI ◽  
KING PACE

This work presents a single chip integrated pulse generator-modulator to be utilized in a short range wireless radio sensors remote control applications. The circuit, which can generate single pulses, modulated in BPSK, OOK, PAM, and also PPM, has been developed in a standard CMOS technology (AMS 0.35 μm). Typical pulse duration is about 1 ns while pulse repetition frequency is until 200 MHz (5 ns "chip" time). The operating supply voltage is ± 2.5 V, while the whole power consumption is about 15 mW. Post-layout parametric and corner analyses have confirmed the theoretical expectations.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Zigang Dong ◽  
Xiaolin Zhou ◽  
Yuanting Zhang

We proposed a new method for designing the CMOS differential log-companding amplifier which achieves significant improvements in linearity, common-mode rejection ratio (CMRR), and output range. With the new nonlinear function used in the log-companding technology, this proposed amplifier has a very small total harmonic distortion (THD) and simultaneously a wide output current range. Furthermore, a differential structure with conventionally symmetrical configuration has been adopted in this novel method in order to obtain a high CMRR. Because all transistors in this amplifier operate in the weak inversion, the supply voltage and the total power consumption are significantly reduced. The novel log-companding amplifier was designed using a 0.18 μm CMOS technology. Improvements in THD, output current range, noise, and CMRR are verified using simulation data. The proposed amplifier operates from a 0.8 V supply voltage, shows a 6.3 μA maximum output current range, and has a 6 μW power consumption. The THD is less than 0.03%, the CMRR of this circuit is 74 dB, and the input referred current noise density is166.1 fA/Hz. This new method is suitable for biomedical applications such as electrocardiogram (ECG) signal acquisition.


2012 ◽  
Vol 256-259 ◽  
pp. 2373-2378
Author(s):  
Wu Shiung Feng ◽  
Chin I Yeh ◽  
Ho Hsin Li ◽  
Cheng Ming Tsao

A wide-tuning range voltage-controlled oscillator (VCO) with adjustable ground-plate inductor for ultra-wide band (UWB) application is presented in this paper. The VCO was implemented by standard 90nm CMOS process at 1.2V supply voltage and power consumption of 6mW. The tuning range from 13.3 GHz to 15.6 GHz with phase noise between -99.98 and -115dBc/Hz@1MHz is obtained. The output power is around -8.7 to -9.6dBm and chip area of 0.77x0.62mm2.


Sign in / Sign up

Export Citation Format

Share Document