scholarly journals Genomic Sequence Analysis of the Multidrug-Resistance Region of Avian Salmonella enterica serovar Indiana Strain MHYL

2019 ◽  
Vol 7 (8) ◽  
pp. 248 ◽  
Author(s):  
Yan Lu ◽  
Yanjia Wen ◽  
Ge Hu ◽  
Yuqi Liu ◽  
Ross C. Beier ◽  
...  

A series of human and animal diseases that are caused by Salmonella infections pose a serious threat to human health and huge economic losses to the livestock industry. We found antibiotic resistance (AR) genes in the genome of 133 strains of S. Indiana from a poultry production site in Shandong Province, China. Salmonella enterica subsp. enterica serovar Indiana strain MHYL had multidrug-resistance (MDR) genes on its genome. Southern blot analysis was used to locate genes on the genomic DNA. High-throughput sequencing technology was used to determine the gene sequence of the MHYL genome. Areas containing MDR genes were mapped based on the results of gene annotation. The AR genes blaTEM, strA, tetA, and aac(6′)-Ib-cr were found on the MHYL genome. The resistance genes were located in two separate MDR regions, RR1 and RR2, containing type I integrons, and Tn7 transposons and multiple IS26 complex transposons with transposable functions. Portions of the MDR regions were determined to be highly homologous to the structure of plasmid pAKU_1 in S. enterica serovar Paratyphi A (accession number: AM412236), SGI11 in S. enterica serovar Typhimurium (accession number: KM023773), and plasmid pS414 in S. Indiana (accession No.: KC237285).

Author(s):  
Hailiang Yu ◽  
Changhao Mi ◽  
Qi Wang ◽  
Wenbin Zou ◽  
Guojun Dai ◽  
...  

Coccidiosis is an important intestinal parasitic disease that causes great economic losses to the global poultry production industry. Circular RNAs (circRNAs) are long non-coding RNAs that play important roles in various infectious diseases and inflammatory responses. However, the expression profiles and functions of circRNAs during Eimeria tenella (E. tenella) infection remain unclear. In this study, high-throughput sequencing was carried out to detect circRNAs in chicken cecal tissues from the control (JC), resistant (JR), and susceptible (JS) groups on day 4.5 postinfection (pi), respectively. A total of 104 circRNAs were differentially expressed, including 47 circRNAs between the JS and JC groups, 38 between the JR and JS groups, and 19 between the JR and JC groups. Functional analyses indicated that these differentially expressed circRNAs were involved in pathways related to E. tenella infection; the adaptive immune response was enriched in the JS vs JC group, the NF-kappa B signaling and natural killer cell-mediated cytotoxicity pathways were enriched in the JS vs JC and JR vs JC groups, while the B cell receptor signaling pathway was enriched in only the JR vs JC group. Moreover, the coexpression network of differentially expressed circRNAs and mRNAs suggested that circRNA2202 and circRNA0759 associated with DTX1 in the JS vs JC group, circRNA4338 associated with VPREB3 and CXCL13L3 in the JR vs JC group, and circRNA2612 associated with IL8L1 and F2RL2 in the JR vs JS group were involved in the immune response upon E. tenella infection. In conclusion, our results provide valuable information on the circRNAs involved in the progression of chicken E. tenella infection and advance our understanding of the circRNA regulatory mechanisms of host resistance and susceptibility to E. tenella infection in chickens.


Author(s):  
Diéssy Kipper ◽  
Renato H. Orsi ◽  
Laura M. Carroll ◽  
Andrea K. Mascitti ◽  
André F. Streck ◽  
...  

Salmonella enterica Heidelberg is a serovar isolated from poultry-producing regions around the World. In Brazil, S. Heidelberg has been frequently detected in poultry flocks, slaughterhouses and chicken. The goal of the present study was to assess the population structure, recent temporal evolution and some important genetic characteristics of S. Heidelberg isolated from Brazilian poultry farms. Phylogenetic analysis of 68 S . Heidelberg genomes sequenced here and additional whole-genomes data from NCBI demonstrated that all isolates from the Brazilian poultry production chain clustered into a monophyletic group, here called S. Heidelberg Brazilian poultry lineage (SH-BPL). Bayesian analysis defined the time of the most recent common ancestor (tMRCA) as 2004 and the overall population size (N e ) constant until 2008, when a ∼10-fold N e increase was observed until circa 2013. SH-BPL presented at least two plasmids with replicons ColpVC ( n =68; 100%), IncX1 ( n =66; 97%), IncA/C2 ( n =65; 95.5%), ColRNAI ( n =43; 63.2%), IncI1 ( n =32; 47%), ColMG828, Col156, IncHI2A, IncHI2, IncQ1, IncX4, IncY and TrfA (each with n<4; <4% each). Antibiotic resistance genes were found, with high frequencies of fosA7 ( n =68; 100%), mdf A ( n =68; 100%), tet(34) ( n =68; 100%), sul2 ( n =64; 94.1%), blaCMY-2 ( n =56; 82.3%) and an overall multi-drug resistance (MDR) profile. Ten pathogenicity islands (SPI1-5, SPI9 and SPI11-14) and 139 virulence genes were also detected. SH-BPL profile was like other previous S. Heidelberg isolates from poultry around the world in the 1990s. In conclusion, the present study demonstrates the recent introduction (2004) and high level of dissemination of an MDR S. Heidelberg lineage in Brazilian poultry operations. IMPORTANCE S. Heidelberg is the most frequent serovar in several broiler farms from the main Brazilian poultry-producing regions. So avian-source foods (mainly chicken carcasses) commercialized in the country and exported to other continents are contaminated with this foodborne pathogen, generating several national and international economic losses. In addition, isolates of this serovar are usually resistant to antibiotics and can cause human invasive and septicemic infection, representing a public health concern. This study demonstrates the use of whole-genome sequencing (WGS) to obtain epidemiological information of one S. Heidelberg lineage highly spread among Brazilian poultry farms. This information will help to define biosecurity measures to control this important Salmonella serovar in Brazilian and worldwide poultry operations.


2019 ◽  
Vol 12 (4) ◽  
pp. 504-521 ◽  
Author(s):  
Saleh Mohammed Jajere

Salmonella genus represents the most common foodborne pathogens frequently isolated from food-producing animals that is responsible for zoonotic infections in humans and animal species including birds. Thus, Salmonella infections represent a major concern to public health, animals, and food industry worldwide. Salmonella enterica represents the most pathogenic specie and includes >2600 serovars characterized thus far. Salmonella can be transmitted to humans along the farm-to-fork continuum, commonly through contaminated foods of animal origin, namely poultry and poultry-related products (eggs), pork, fish etc. Some Salmonella serovars are restricted to one specific host commonly referred to as "host-restricted" whereas others have broad host spectrum known as "host-adapted" serovars. For Salmonella to colonize its hosts through invading, attaching, and bypassing the host's intestinal defense mechanisms such as the gastric acid, many virulence markers and determinants have been demonstrated to play crucial role in its pathogenesis; and these factors included flagella, capsule, plasmids, adhesion systems, and type 3 secretion systems encoded on the Salmonella pathogenicity island (SPI)-1 and SPI- 2, and other SPIs. The epidemiologically important non-typhoidal Salmonella (NTS) serovars linked with a high burden of foodborne Salmonella outbreaks in humans worldwide included Typhimurium, Enteritidis, Heidelberg, and Newport. The increased number of NTS cases reported through surveillance in recent years from the United States, Europe and low- and middle-income countries of the world suggested that the control programs targeted at reducing the contamination of food animals along the food chain have largely not been successful. Furthermore, the emergence of several clones of Salmonella resistant to multiple antimicrobials worldwide underscores a significant food safety hazard. In this review, we discussed on the historical background, nomenclature and taxonomy, morphological features, physical and biochemical characteristics of NTS with a particular focus on the pathogenicity and virulence factors, host specificity, transmission, and antimicrobial resistance including multidrug resistance and its surveillance.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Danish Sharafat Rajput ◽  
Dong Zeng ◽  
Abdul Khalique ◽  
Samia Sharafat Rajput ◽  
Hesong Wang ◽  
...  

AbstractNecrotic enteritis (NE) is being considered as one of the most important intestinal diseases in the recent poultry production systems, which causes huge economic losses globally. NE is caused by Clostridium perfringens, a pathogenic bacterium, and normal resident of the intestinal microflora of healthy broiler chickens. Gastrointestinal tract (GIT) of broiler chicken is considered as the most integral part of pathogen’s entrance, their production and disease prevention. Interaction between C. perfringens and other pathogens such as Escherichia coli and Salmonella present in the small intestine may contribute to the development of NE in broiler chickens. The antibiotic therapy was used to treat the NE; however European Union has imposed a strict ban due to the negative implications of drug resistance. Moreover, antibiotic growth promoters cause adverse effects on human health as results of withdrawal of antibiotic residues in the chicken meat. After restriction on use of antibiotics, numerous studies have been carried out to investigate the alternatives to antibiotics for controlling NE. Thus, possible alternatives to prevent NE are bio-therapeutic agents (Probiotics), prebiotics, organic acids and essential oils which help in nutrients digestion, immunity enhancement and overall broiler performance. Recently, probiotics are extensively used alternatives to antibiotics for improving host health status and making them efficient in production. The aim of review is to describe a replacement to antibiotics by using different microbial strains as probiotics such as bacteria and yeasts etc. having bacteriostatic properties which inhibit growth of pathogens and neutralize the toxins by different modes of action.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1261
Author(s):  
Khatuna Makalatia ◽  
Elene Kakabadze ◽  
Nata Bakuradze ◽  
Nino Grdzelishvili ◽  
Ben Stamp ◽  
...  

Bacteriophages that lyse Salmonella enterica are potential tools to target and control Salmonella infections. Investigating the host range of Salmonella phages is a key to understand their impact on bacterial ecology, coevolution and inform their use in intervention strategies. Virus–host infection networks have been used to characterize the “predator–prey” interactions between phages and bacteria and provide insights into host range and specificity. Here, we characterize the target-range and infection profiles of 13 Salmonella phage clones against a diverse set of 141 Salmonella strains. The environmental source and taxonomy contributed to the observed infection profiles, and genetically proximal phages shared similar infection profiles. Using in vitro infection data, we analyzed the structure of the Salmonella phage–bacteria infection network. The network has a non-random nested organization and weak modularity suggesting a gradient of target-range from generalist to specialist species with nested subsets, which are also observed within and across the different phage infection profile groups. Our results have implications for our understanding of the coevolutionary mechanisms shaping the ecological interactions between Salmonella phages and their bacterial hosts and can inform strategies for targeting Salmonella enterica with specific phage preparations.


2011 ◽  
Vol 88 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Christian Guelly ◽  
Peng-Peng Zhu ◽  
Lea Leonardis ◽  
Lea Papić ◽  
Janez Zidar ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aijuan Zheng ◽  
Anrong Zhang ◽  
Zhimin Chen ◽  
Shoaib Ahmed Pirzado ◽  
Wenhuan Chang ◽  
...  

Abstract Background Immunological stress decreases feed intake, suppresses growth and induces economic losses. However, the underlying molecular mechanism remains unclear. Label-free liquid chromatography and mass spectrometry (LC-MS) proteomics techniques were employed to investigate effects of immune stress on the hepatic proteome changes of Arbor Acres broilers (Gallus Gallus domesticus) challenged with Escherichia coli lipopolysaccharide (LPS). Results Proteomic analysis indicated that 111 proteins were differentially expressed in the liver of broiler chickens from the immune stress group. Of these, 28 proteins were down-regulated, and 83 proteins were up-regulated in the immune stress group. Enrichment analysis showed that immune stress upregulated the expression of hepatic proteins involved in defense function, amino acid catabolism, ion transport, wound healing, and hormone secretion. Furthermore, immune stress increased valine, leucine and isoleucine degradation pathways. Conclusion The data suggests that growth depression of broiler chickens induced by immune stress is triggered by hepatic proteome alterations, and provides a new insight into the mechanism by which immune challenge impairs poultry production.


2005 ◽  
Vol 73 (6) ◽  
pp. 3445-3452 ◽  
Author(s):  
Melita A. Gordon ◽  
Dominic L. Jack ◽  
David H. Dockrell ◽  
Margaret E. Lee ◽  
Robert C. Read

ABSTRACT Gamma interferon (IFN-γ) is a critical cytokine in host defense against salmonella infections, but its role in phagocytic killing of intracellular Salmonella spp. has been investigated mainly in animal rather than human cells. We measured the effect of recombinant IFN-γ (rIFN-γ) priming on bacterial internalization, intracellular killing, oxidative burst, and cytokine release during phagocytosis of Salmonella enterica serovar Typhimurium by human monocyte-derived macrophages (MDM). Eleven-day-old MDM, primed for 72 h with rIFN-γ (100 ng/ml) exhibited an increased proportion of cells with associated bacteria (31% versus 26%, P = 0.036) and a 67% increase in internalized bacteria per cell compared to unprimed cells (P = 0.025). Retrieval of viable bacteria following internalization was reduced 3.6-fold in 72-h primed versus unprimed MDM (interquartile range, 3.1 to 6.4) at 0.5 h due to enhanced early intracellular killing, and this difference was maintained up to 24 h. In contrast, cells primed for only 24 h exhibited no increase in early killing. MDM were competent to produce an early oxidative burst when stimulated with phorbol myristate acetate, which was fully abrogated by the respiratory burst inhibitor diphenyleneiodonium chloride (DPI), but infection of MDM with S. enterica serovar Typhimurium did not cause an increase in the early respiratory burst under unprimed or primed conditions, and DPI had no effect on the early killing of bacteria by primed or unprimed MDM. During 24 h following infection, rIFN-γ-primed MDM released more interleukin-12 (IL-12) and less IL-10 relative to unprimed cells. We conclude that 72-h priming with rIFN-γ increases the efficiency of internalization and nonoxidative early intracellular killing of S. enterica serovar Typhimurium by human macrophages and modifies subsequent cytokine release.


Sign in / Sign up

Export Citation Format

Share Document