scholarly journals Effects of Propolis Extract and Propolis-Derived Compounds on Obesity and Diabetes: Knowledge from Cellular and Animal Models

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4394 ◽  
Author(s):  
Kitamura

Propolis is a natural product resulting from the mixing of bee secretions with botanical exudates. Since propolis is rich in flavonoids and cinnamic acid derivatives, the application of propolis extracts has been tried in therapies against cancer, inflammation, and metabolic diseases. As metabolic diseases develop relatively slowly in patients, the therapeutic effects of propolis in humans should be evaluated over long periods of time. Moreover, several factors such as medical history, genetic inheritance, and living environment should be taken into consideration in human studies. Animal models, especially mice and rats, have some advantages, as genetic and microbiological variables can be controlled. On the other hand, cellular models allow the investigation of detailed molecular events evoked by propolis and derivative compounds. Taking advantage of animal and cellular models, accumulating evidence suggests that propolis extracts have therapeutic effects on obesity by controlling adipogenesis, adipokine secretion, food intake, and energy expenditure. Studies in animal and cellular models have also indicated that propolis modulates oxidative stress, the accumulation of advanced glycation end products (AGEs), and adipose tissue inflammation, all of which contribute to insulin resistance or defects in insulin secretion. Consequently, propolis treatment may mitigate diabetic complications such as nephropathy, retinopathy, foot ulcers, and non-alcoholic fatty liver disease. This review describes the beneficial effects of propolis on metabolic disorders.

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 682
Author(s):  
Serena Coppola ◽  
Carmen Avagliano ◽  
Antonio Calignano ◽  
Roberto Berni Canani

Worldwide obesity is a public health concern that has reached pandemic levels. Obesity is the major predisposing factor to comorbidities, including type 2 diabetes, cardiovascular diseases, dyslipidemia, and non-alcoholic fatty liver disease. The common forms of obesity are multifactorial and derive from a complex interplay of environmental changes and the individual genetic predisposition. Increasing evidence suggest a pivotal role played by alterations of gut microbiota (GM) that could represent the causative link between environmental factors and onset of obesity. The beneficial effects of GM are mainly mediated by the secretion of various metabolites. Short-chain fatty acids (SCFAs) acetate, propionate and butyrate are small organic metabolites produced by fermentation of dietary fibers and resistant starch with vast beneficial effects in energy metabolism, intestinal homeostasis and immune responses regulation. An aberrant production of SCFAs has emerged in obesity and metabolic diseases. Among SCFAs, butyrate emerged because it might have a potential in alleviating obesity and related comorbidities. Here we reviewed the preclinical and clinical data that contribute to explain the role of butyrate in this context, highlighting its crucial contribute in the diet-GM-host health axis.


2019 ◽  
Vol 317 (6) ◽  
pp. E1205-E1217 ◽  
Author(s):  
Siyuan Cui ◽  
Lu Qiao ◽  
Shanshan Yu ◽  
Lili Men ◽  
Yu Li ◽  
...  

Interleukin-8 (IL-8, also named CXCL8) binds to its receptors (CXCR1 and CXCR2) with subsequent recruitment of neutrophils and enhancement of their infiltration into inflamed sites, which exaggerates inflammation in many diseases. Recent studies have proposed that metabolic disorders can be attenuated by counteracting certain inflammatory signal pathways. In this study, we examined whether intervention with G31P, an antagonist of CXCL8, could attenuate tissue inflammation and development of metabolic disorders in db/db mice. The db/m and db/db mice were subcutaneously injected with G31P or equivalent normal saline once a day for 6 wk. The physical and metabolic parameters, glucose tolerance, insulin sensitivity, hepatic lipid accumulation, and inflammation markers were measured. G31P improved hepatic insulin sensitivity by modulating expression of genes related to gluconeogenesis and phosphorylated Akt levels. The expressions of several genes encoding proteins involved in de novo lipogenesis were decreased in G31P-treated db/db mice. Meanwhile, immune cell infiltration and cytokine release were attenuated in db/db mice with G31P treatment. G31P also improved the ratio of proinflammatory M1 and anti-inflammatory M2 macrophages. Furthermore, G31P ameliorates metabolic disturbances via inhibition of CXCR1 and CXCR2 pathways in db/db mice. These data suggest that the selective inhibition of CXC chemokines may have therapeutic effects on symptoms associated with obesity and diabetes.


2015 ◽  
Vol 114 (11) ◽  
pp. 1756-1765 ◽  
Author(s):  
J. M. G. Gomes ◽  
J. A. Costa ◽  
R. C. Alfenas

AbstractEvidence from animal and human studies has associated gut microbiota, increased translocation of lipopolysaccharide (LPS) and reduced intestinal integrity (II) with the inflammatory state that occurs in obesity and type 2 diabetes mellitus (T2DM). Consumption of Ca may favour body weight reduction and glycaemic control, but its influence on II and gut microbiota is not well understood. Considering the impact of metabolic diseases on public health and the role of Ca on the pathophysiology of these diseases, this review critically discusses possible mechanisms by which high-Ca diets could affect gut microbiota and II. Published studies from 1993 to 2015 about this topic were searched and selected from Medline/PubMed, Scielo and Lilacs databases. High-Ca diets seem to favour the growth of lactobacilli, maintain II (especially in the colon), reduce translocation of LPS and regulate tight-junction gene expression. We conclude that dietary Ca might interfere with gut microbiota and II modulations and it can partly explain the effect of Ca on obesity and T2DM control. However, further research is required to define the supplementation period, the dose and the type of Ca supplement (milk or salt) required for more effective results. As Ca interacts with other components of the diet, these interactions must also be considered in future studies. We believe that more complex mechanisms involving extraintestinal disorders (hormones, cytokines and other biomarkers) also need to be studied.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Reza Norouzirad ◽  
Pedro González-Muniesa ◽  
Asghar Ghasemi

The prevalence of obesity and diabetes is increasing worldwide. Obesity and diabetes are associated with oxidative stress, inflammation, endothelial dysfunction, insulin resistance, and glucose intolerance. Obesity, a chronic hypoxic state that is associated with decreased nitric oxide (NO) bioavailability, is one of the main causes of type 2 diabetes. The hypoxia-inducible factor-1α(HIF-1α) is involved in the regulation of several genes of the metabolic pathways including proinflammatory adipokines, endothelial NO synthase (eNOS), and insulin signaling components. It seems that adipose tissue hypoxia and NO-dependent vascular and cellular dysfunctions are responsible for other consequences linked to obesity-related disorders. Although hyperoxia could reverse hypoxic-related disorders, it increases the production of reactive oxygen species (ROS) and decreases the production of NO. Nitrate can restore NO depletion and has antioxidant properties, and recent data support the beneficial effects of nitrate therapy in obesity and diabetes. Although it seems reasonable to combine hyperoxia and nitrate treatments for managing obesity/diabetes, the combined effects have not been investigated yet. This review discusses some aspects of tissue oxygenation and the potential effects of hyperoxia and nitrate interventions on obesity/diabetes management. It can be proposed that concomitant use of hyperoxia and nitrate is justified for managing obesity and diabetes.


2021 ◽  
Vol 6 (2) ◽  
pp. 97-99
Author(s):  
Juan Farak Gomez

Context: The incidence of autoimmune diseases and allergies has increased markedly in the last half of the 20th century, especially in more developed countries, with an increase in urbanization and hygiene that has led to the elimination of many parasitic infections. Objective: To analyze through scientific bibliographic sources the effects of the parasite load, especially helminthiasis, on the appearance of autoimmune and allergic diseases. Methodology: The documentary analysis of different scientific sources that refer to the theory of immunomodulation by helminths was used. Results: They suggest that the treatment of autoimmune diseases with helminths or products derived from them can have protective and therapeutic effects in these patients. Conclusions: It could be concluded that the immunodulation mechanisms carried out by helminths prevent patients from eliminating the parasites, but have beneficial effects on the course of some autoimmune diseases. Although the causal relationship is not fully proven, studies in animal models and clinical trials carried out in patients with autoimmune diseases suggest that their treatment with helminths or products derived from them may have protective and therapeutic effects in these patients.


2019 ◽  
Vol 26 (19) ◽  
pp. 3439-3456 ◽  
Author(s):  
Laura Vergani

Background: Fatty liver, or steatosis, is a condition of excess accumulation of lipids, mainly under form of triglycerides (TG), in the liver, and it is the hallmark of non-alcoholic fatty liver disease (NAFLD). NAFLD is the most common liver disorder world-wide and it has frequently been associated with obesity, hyperlipidemia and insulin resistance. Free fatty acids (FA) are the major mediators of hepatic steatosis; patients with NAFLD have elevated levels of circulating FA that correlate with disease severity. Methods: Steatosis is a reversible condition that can be resolved with changed behaviors, or that can progress towards more severe liver damages such as steatohepatitis (NASH), fibrosis and cirrhosis. In NAFLD, FA of exogenous or endogenous origin accumulate in the hepatocytes and trigger liver damages. Excess TG are stored in cytosolic lipid droplets (LDs) that are dynamic organelles acting as hubs for lipid metabolism. Results: In the first part of this review, we briefly reassumed the main classes of FA and their chemical classification as a function of the presence and number of double bonds, their metabolic pathways and effects on human health. Then, we summarized the main genetic and diet-induced animal models of NAFLD, as well as the cellular models of NAFLD. Conclusions: In recent years, both the diet-induced animal models of NAFLD as well as the cellular models of NAFLD have found ever more application to investigate the mechanisms involved in NAFLD, and we referred to their advantages and disadvantages.


2020 ◽  
Vol 21 (2) ◽  
pp. 552 ◽  
Author(s):  
Hyun-Jin An ◽  
Jung-Yeon Kim ◽  
Mi-Gyeong Gwon ◽  
Hyemin Gu ◽  
Hyun-Ju Kim ◽  
...  

Hyperlipidemia is a chronic disorder that plays an important role in the development of cardiovascular diseases, type II diabetes, atherosclerosis, hypertension, and non-alcoholic fatty liver disease. Hyperlipidemias have created a worldwide health crisis and impose a substantial burden not only on personal health but also on societies and economies. Transcription factors in the sterol regulatory element binding protein (SREBP) family are key regulators of the lipogenic genes in the liver. SREBPs regulate lipid homeostasis by controlling the expression of a range of enzymes required for the synthesis of endogenous cholesterol, fatty acids, triacylglycerol, and phospholipids. Thereby, SREBPs have been considered as targets for the treatment of metabolic diseases. The aim of this study was to investigate the beneficial functions and the possible underlying molecular mechanisms of SREBP decoy ODN, which is a novel inhibitor of SREBPs, in high-fat diet (HFD)-fed hyperlipidemic mice. Our studies using HFD-induced hyperlipidemia animal model revealed that SREBB decoy ODN inhibited the increased expression of fatty acid synthetic pathway, such as SREBP-1c, FAS, SCD-1, ACC1, and HMGCR. In addition, SREBP decoy ODN decreased pro-inflammatory cytokines, including TNF-α, IL-1β, IL-8, and IL-6 expression. These results suggest that SREBP decoy ODN exerts its anti-hyperlipidemia effects in HFD-induced hyperlipidemia mice by regulating their lipid metabolism and inhibiting lipogenesis through inactivation of the SREPB pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Huan Yi ◽  
Hengyang Peng ◽  
Xinyue Wu ◽  
Xinmei Xu ◽  
Tingting Kuang ◽  
...  

Metabolic diseases have become major public health issues worldwide. Searching for effective drugs for treating metabolic diseases from natural compounds has attracted increasing attention. Quercetin, an important natural flavonoid, is extensively present in fruits, vegetables, and medicinal plants. Due to its potentially beneficial effects on human health, quercetin has become the focus of medicinal attention. In this review, we provide a timely and comprehensive summary of the pharmacological advances and clinical data of quercetin in the treatment of three metabolic diseases, including diabetes, hyperlipidemia, and nonalcoholic fatty liver disease (NAFLD). Accumulating evidences obtained from animal experiments prove that quercetin has beneficial effects on these three diseases. It can promote insulin secretion, improve insulin resistance, lower blood lipid levels, inhibit inflammation and oxidative stress, alleviate hepatic lipid accumulation, and regulate gut microbiota disorders in animal models. However, human clinical studies on the effects of quercetin in diabetes, hyperlipidemia, and NAFLD remain scarce. More clinical trials with larger sample sizes and longer trial durations are needed to verify its true effectiveness in human subjects. Moreover, another important issue that needs to be resolved in future research is to improve the bioavailability of quercetin. This review may provide valuable information for the basic research, drug development, and clinical application of quercetin in the treatment of metabolic diseases.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 142
Author(s):  
Ana García-Aguilar ◽  
Olga Palomino ◽  
Manuel Benito ◽  
Carlos Guillén

Polyphenols represent a group of secondary metabolites of plants which have been analyzed as potent regulators of multiple biological processes, including cell proliferation, apoptosis, and autophagy, among others. These natural compounds exhibit beneficial effects and protection against inflammation, oxidative stress, and related injuries including metabolic diseases, such as cardiovascular damage, obesity and diabetes, and neurodegeneration. This review aims to summarize the mechanisms of action of polyphenols in relation to the activation of autophagy, stimulation of mitochondrial function and antioxidant defenses, attenuation of oxidative stress, and reduction in cell apoptosis, which may be responsible of the health promoting properties of these compounds.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1356 ◽  
Author(s):  
Anaïs Alves ◽  
Arthur Bassot ◽  
Anne-Laure Bulteau ◽  
Luciano Pirola ◽  
Béatrice Morio

Glycine is the proteinogenic amino-acid of lowest molecular weight, harboring a hydrogen atom as a side-chain. In addition to being a building-block for proteins, glycine is also required for multiple metabolic pathways, such as glutathione synthesis and regulation of one-carbon metabolism. Although generally viewed as a non-essential amino-acid, because it can be endogenously synthesized to a certain extent, glycine has also been suggested as a conditionally essential amino acid. In metabolic disorders associated with obesity, type 2 diabetes (T2DM), and non-alcoholic fatty liver disease (NAFLDs), lower circulating glycine levels have been consistently observed, and clinical studies suggest the existence of beneficial effects induced by glycine supplementation. The present review aims at synthesizing the recent advances in glycine metabolism, pinpointing its main metabolic pathways, identifying the causes leading to glycine deficiency—especially in obesity and associated metabolic disorders—and evaluating the potential benefits of increasing glycine availability to curb the progression of obesity and obesity-related metabolic disturbances. This study focuses on the importance of diet, gut microbiota, and liver metabolism in determining glycine availability in obesity and associated metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document