scholarly journals Probiotics Regulate Gut Microbiota: An Effective Method to Improve Immunity

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6076
Author(s):  
Xinzhou Wang ◽  
Peng Zhang ◽  
Xin Zhang

Probiotics are beneficial active microorganisms that colonize the human intestines and change the composition of the flora in particular parts of the host. Recently, the use of probiotics to regulate intestinal flora to improve host immunity has received widespread attention. Recent evidence has shown that probiotics play significant roles in gut microbiota composition, which can inhibit the colonization of pathogenic bacteria in the intestine, help the host build a healthy intestinal mucosa protective layer, and enhance the host immune system. Based on the close relationship between the gut microbiota and human immunity, it has become an extremely effective way to improve human immunity by regulating the gut microbiome with probiotics. In this review, we discussed the influence of probiotics on the gut microbiota and human immunity, and the relationship between immunity, probiotics, gut microbiota, and life quality. We further emphasized the regulation of gut microflora through probiotics, thereby enhancing human immunity and improving people’s lives.

2021 ◽  
Vol 12 ◽  
Author(s):  
Wenxia Zhu ◽  
Yilin Wu ◽  
Hui Liu ◽  
Caini Jiang ◽  
Lili Huo

The gut microbiota is an important regulator for maintaining the organ microenvironment through effects on the gut-vital organs axis. Respiratory tract infections are one of the most widespread and harmful diseases, especially in the last 2 years. Many lines of evidence indicate that the gut microbiota and its metabolites can be considered in therapeutic strategies to effectively prevent and treat respiratory diseases. However, due to the different gut microbiota composition in children compared to adults and the dynamic development of the immature immune system, studies on the interaction between children’s intestinal flora and respiratory infections are still lacking. Here, we describe the changes in the gut microbiota of children with respiratory tract infections and explain the relationship between the microbiota of children with their immune function and disease development. In addition, we will provide perspectives on the direct manipulation of intestinal microbes to prevent or treat pediatric respiratory infections.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Xuehang Zhu ◽  
Bin Fu ◽  
Manyuan Dong ◽  
Yangyang Guo ◽  
Zheng Cao ◽  
...  

Abstract The gut microbiota–host co-metabolites are good indicators for representing the cross-talk between host and gut microbiota in a bi-direct manner. There is increasing evidence that levels of aromatic amino acids (AAAs) are associated with the alteration of intestinal microbial community though the effects of long-term microbial disturbance remain unclear. Here we monitored the gut microbiota composition and host–microbiota co-metabolites AAA profiles of mice after gentamicin and ceftriaxone treatments for nearly 4 months since their weaning to reveal the relationship between host and microbiome in long- term microbial disturbances. The study was performed employing targeted LC-MS measurement of AAA-related metabolites and 16S RNA sequence of mice cecal contents. The results showed obvious decreased gut microbial diversity and decreased Firmicutes/Bacteroidetes ratio in the cecal contents after long-term antibiotics treatment. The accumulated AAA (tyrosine, phenylalanine and tryptophan) and re-distribution of their downstreaming metabolites that produced under the existence of intestinal flora were found in mice treated with antibiotics for 4 months. Our results suggested that the long-term antibiotic treatment significantly changed the composition of the gut microbiota and destroyed the homeostasis in the intestinal metabolism. And the urinary AAA could be an indicator for exploring interactions between host and gut microbiota.


mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Sandi Wong ◽  
W. Zac Stephens ◽  
Adam R. Burns ◽  
Keaton Stagaman ◽  
Lawrence A. David ◽  
...  

ABSTRACT Gut microbiota influence the development and physiology of their animal hosts, and these effects are determined in part by the composition of these microbial communities. Gut microbiota composition can be affected by introduction of microbes from the environment, changes in the gut habitat during development, and acute dietary alterations. However, little is known about the relationship between gut and environmental microbiotas or about how host development and dietary differences during development impact the assembly of gut microbiota. We sought to explore these relationships using zebrafish, an ideal model because they are constantly immersed in a defined environment and can be fed the same diet for their entire lives. We conducted a cross-sectional study in zebrafish raised on a high-fat, control, or low-fat diet and used bacterial 16S rRNA gene sequencing to survey microbial communities in the gut and external environment at different developmental ages. Gut and environmental microbiota compositions rapidly diverged following the initiation of feeding and became increasingly different as zebrafish grew under conditions of a constant diet. Different dietary fat levels were associated with distinct gut microbiota compositions at different ages. In addition to alterations in individual bacterial taxa, we identified putative assemblages of bacterial lineages that covaried in abundance as a function of age, diet, and location. These results reveal dynamic relationships between dietary fat levels and the microbial communities residing in the intestine and the surrounding environment during ontogenesis. IMPORTANCE The ability of gut microbiota to influence host health is determined in part by their composition. However, little is known about the relationship between gut and environmental microbiotas or about how ontogenetic differences in dietary fat impact gut microbiota composition. We addressed these gaps in knowledge using zebrafish, an ideal model organism because their environment can be thoroughly sampled and they can be fed the same diet for their entire lives. We found that microbial communities in the gut changed as zebrafish aged under conditions of a constant diet and became increasingly different from microbial communities in their surrounding environment. Further, we observed that the amount of fat in the diet had distinct age-specific effects on gut community assembly. These results reveal the complex relationships between microbial communities residing in the intestine and those in the surrounding environment and show that these relationships are shaped by dietary fat throughout the life of animal hosts.


2018 ◽  
Vol 120 (9) ◽  
pp. 1014-1022 ◽  
Author(s):  
Daniel Lin ◽  
Brandilyn A. Peters ◽  
Charles Friedlander ◽  
Hal J. Freiman ◽  
James J. Goedert ◽  
...  

AbstractIncreasing evidence indicates that gut microbiota may influence colorectal cancer risk. Diet, particularly fibre intake, may modify gut microbiota composition, which may affect cancer risk. We investigated the relationship between dietary fibre intake and gut microbiota in adults. Using 16S rRNA gene sequencing, we assessed gut microbiota in faecal samples from 151 adults in two independent study populations: National Cancer Institute (NCI), n 75, and New York University (NYU), n 76. We calculated energy-adjusted fibre intake based on FFQ. For each study population with adjustment for age, sex, race, BMI and smoking, we evaluated the relationship between fibre intake and gut microbiota community composition and taxon abundance. Total fibre intake was significantly associated with overall microbial community composition in NYU (P=0·008) but not in NCI (P=0·81). In a meta-analysis of both study populations, higher fibre intake tended to be associated with genera of class Clostridia, including higher abundance of SMB53 (fold change (FC)=1·04, P=0·04), Lachnospira (FC=1·03, P=0·05) and Faecalibacterium (FC=1·03, P=0·06), and lower abundance of Actinomyces (FC=0·95, P=0·002), Odoribacter (FC=0·95, P=0·03) and Oscillospira (FC=0·96, P=0·06). A species-level meta-analysis showed that higher fibre intake was marginally associated with greater abundance of Faecalibacterium prausnitzii (FC=1·03, P=0·07) and lower abundance of Eubacterium dolichum (FC=0·96, P=0·04) and Bacteroides uniformis (FC=0·97, P=0·05). Thus, dietary fibre intake may impact gut microbiota composition, particularly class Clostridia, and may favour putatively beneficial bacteria such as F. prausnitzii. These findings warrant further understanding of diet–microbiota relationships for future development of colorectal cancer prevention strategies.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Kelsea Drall ◽  
Hein Tun ◽  
Meghan B Azad ◽  
David Guttman ◽  
Malcolm Sears ◽  
...  

Abstract Objectives Colonization with Clostridioides difficile occurs in up to half of infants and is predicted by formula feeding. Although this microbe does not appear to pose any immediate risks for infants, its presence has been associated with susceptibility to chronic disease later in childhood, perhaps by promoting changes in the gut microbiome that may increase opportunity for colonization of pathogenic bacteria. We explored these compositional changes in exclusively breastfed, partially breastfed and exclusively formula fed infants to describe the microbial community and C. difficile colonization in infants with distinct diets. Methods This study includes 1562 infants enrolled in the Canadian Healthy Infant Longitudinal Development (CHILD) Study. Infants provided a fecal sample at 3–4 months of age (Mean: 3.56, SD: 1.00) which was analyzed using 16S rRNA sequencing and targeted qPCR for C. difficile. Mode of feeding was recorded in a questionnaire at a 3 month follow-up visit. C. difficile colonization was defined as positive detection (CD+) in the fecal sample (reference: not present, CD-). Multivariate association with linear models (MaAslin) was used to determine changes in microbiota composition following arsine-square root transformation of relative abundances and FDR correction. Results The prevalence of C. difficile colonization among all infants was 30.9%. Colonization rates differed among feeding groups: 22.63% of exclusively breastfed infants, 35.96% of partially breastfed infants and 49.63% of exclusively formula fed infants (P < 0.001). Microbes of the genus Bifidobacterium were decreased in CD + exclusively breastfed infants compared to non-carriers of the same diet (q = 0.02). Additionally, Blautia, Coprococcus and Clostridium, of the Lachnospiraceae family, and microbes of the Bacteroidetes phylum were of higher relative abundance (all q < 0.01) in breastfed CD + infants (both partial and exclusive). In exclusively formula fed infants, C. difficile colonization was not significantly associated with microbiota composition. Conclusions C. difficile colonization may have a dysbiotic effect on the gut microbiota composition of breastfed infants, changes which have previously been associated with childhood atopy and obesity. Funding Sources Canadian Institutes of Health Research (CIHR). AllerGen Network of Centres of Excellence (NCE)


Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 665 ◽  
Author(s):  
Hongtao Qi ◽  
Ying Liu ◽  
Xin Qi ◽  
Hui Liang ◽  
Huaxin Chen ◽  
...  

Normal intestinal flora is widely involved in many functions of the host: nutritional metabolism; maintenance of intestinal microecological balance; regulation of intestinal endocrine function and nerve signal transduction; promotion of intestinal immune system development and maturation; inhibition of pathogenic bacteria growth and colonization, reduction of its invasion to intestinal mucosa, and so on. In recent years, more and more studies have shown that intestinal flora is closely related to the occurrence, development, and treatment of various tumors. It is indicated that recombinant phycoerythrin (RPE) has significant anti-tumor and immunomodulatory effects. However, little is known about the mechanism of the effect of oral (or intragastric) administration of RPE on gut microbiota in tumor-bearing animals. In this study, using high-throughput 16S rDNA sequencing, we examined the response of gut microbiota in H22-bearing mice to dietary RPE supplementation. The results showed that the abundance of beneficial bacteria in the mice intestinal flora decreased and that of the detrimental flora increased after inoculation with tumor cells (H22); following treatment with dietary RPE, the abundance of beneficial bacteria in the intestinal flora significantly increased and that of detrimental bacteria decreased. In this study, for the first time, it was demonstrated that dietary RPE could modulate the gut microbiota of the H22 bearing mice by increasing the abundance of beneficial bacteria and decreasing that of detrimental bacteria among intestinal bacteria, providing evidence for the mechanism by which bioactive proteins affect intestinal nutrition and disease resistance in animals.


2021 ◽  
Vol 46 (1) ◽  
pp. 11-22
Author(s):  
Zoran Joksimović ◽  
Dušan Bastać ◽  
Snežana Pavlović

The gut microbiota of our organism is a community of bacteria, archaea, fungi, viruses and parasites that make up a unique ecosystem in the digestive tract, which consists of about 1014 microorganisms. The diversity of this community between individuals occurs because of the differences in the host genome and the impact of environmental factors, including hygiene, diet, lifestyle and the use of different drugs. Significant evidence suggests that changes in the microbiota could play a role in cardiovascular diseases. The results of research papers for the last two decades have confirmed that altered gut microbiota composition (dysbiosis) contributes to the development of various diseases, including cardiovascular diseases, type 2 diabetes, chronic kidney disease, nonalcoholic fatty liver disease, chronic inflammatory bowel disease and even certain types of cancer. There is growing evidence that in the future, apart from current predisposing factors for cardiovascular and metabolic diseases, including genetic, environmental and lifestyle factors, one should count on new risk factors such as nutritional disproportion and gut dysbiosis. Thus, we look upon the relationship between the gastrointestinal tract and cardiovascular system, i.e. the "gut-heart axis" in a new way.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shanshan Guo ◽  
Wenye Geng ◽  
Shan Chen ◽  
Li Wang ◽  
Xuli Rong ◽  
...  

The effects of ginger on gastrointestinal disorders such as ulcerative colitis have been widely investigated using experimental models; however, the mechanisms underlying its therapeutic actions are still unknown. In this study, we investigated the correlation between the therapeutic effects of ginger and the regulation of the gut microbiota. We used dextran sulfate sodium (DSS) to induce colitis and found that ginger alleviated colitis-associated pathological changes and decreased the mRNA expression levels of interleukin-6 and inducible nitric oxide synthase in mice. 16s rRNA sequencing analysis of the feces samples showed that mice with colitis had an intestinal flora imbalance with lower species diversity and richness. At the phylum level, a higher abundance of pathogenic bacteria, Proteobacteria and firmicutes, were observed; at the genus level, most samples in the model group showed an increase in Lachnospiraceae_NK4A136_group. The overall analysis illustrated an increase in the relative abundance of Lactobacillus_murinus, Lachnospiraceae_bacterium_615, and Ruminiclostridium_sp._KB18. These increased pathogenic bacteria in model mice were decreased when treated with ginger. DSS-treated mice showed a lower abundance of Muribaculaceae, and ginger corrected this disorder. The bacterial community structure of the ginger group analyzed with Alpha and Beta indices was similar to that of the control group. The results also illustrated that altered intestinal microbiomes affected physiological functions and adjusted key metabolic pathways in mice. In conclusion, this research presented that ginger reduced DSS-induced colitis severity and positively regulated the intestinal microbiome. Based on the series of data in this study, we hypothesize that ginger can improve diseases by restoring the diversity and functions of the gut microbiota.


Author(s):  
Ghada Araji ◽  
Julian Maamari ◽  
Fatima Ali Ahmad ◽  
Rana Zareef ◽  
Patrick Chaftari ◽  
...  

ABSTRACT The discovery of immune checkpoint inhibitors (ICIs) has revolutionized the care of cancer patients. However, the response to ICI therapy exhibits substantial interindividual variability. Efforts have been directed to identify biomarkers that predict the clinical response to ICIs. In recent years, the gut microbiome has emerged as a critical player that influences the efficacy of immunotherapy. An increasing number of studies have suggested that the baseline composition of a patient's gut microbiota and its dysbiosis are correlated with the outcome of cancer immunotherapy. This review tackles the rapidly growing body of evidence evaluating the relationship between the gut microbiome and the response to ICI therapy. Additionally, this review highlights the impact of antibiotic-induced dysbiosis on ICI efficacy and discusses the possible therapeutic interventions to optimize the gut microbiota composition to augment immunotherapy efficacy.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Wenyi Zhou ◽  
Yiyu Cheng ◽  
Ping Zhu ◽  
M. I. Nasser ◽  
Xueyan Zhang ◽  
...  

Emerging evidence has identified the association between gut microbiota and various diseases, including cardiovascular diseases (CVDs). Altered intestinal flora composition has been described in detail in CVDs, such as hypertension, atherosclerosis, myocardial infarction, heart failure, and arrhythmia. In contrast, the importance of fermentation metabolites, such as trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and secondary bile acid (BA), has also been implicated in CVD development, prevention, treatment, and prognosis. The potential mechanisms are conventionally thought to involve immune regulation, host energy metabolism, and oxidative stress. However, numerous types of programmed cell death, including apoptosis, autophagy, pyroptosis, ferroptosis, and clockophagy, also serve as a key link in microbiome-host cross talk. In this review, we introduced and summarized the results from recent studies dealing with the relationship between gut microbiota and cardiac disorders, highlighting the role of programmed cell death. We hope to shed light on microbiota-targeted therapeutic strategies in CVD management.


Sign in / Sign up

Export Citation Format

Share Document