scholarly journals Nanomaterials to Enhance Food Quality, Safety, and Health Impact

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 941 ◽  
Author(s):  
Sergio Torres-Giner ◽  
Cristina Prieto ◽  
Jose M. Lagaron

Food quality and safety are key aspects to guarantee that foods reach consumers in optimal conditions from the point of view of freshness and microbiology. Nanotechnology offers significant potential to secure or even enhance these aspects. Novel technologies, such as nanofabrication and nanoencapsulation, can provide new added value solutions for the fortification of foods with bioactives and targeted controlled release in the gut. Nanomaterials can also support food preservation aspects by being added directly into a food matrix or into food contact materials such as packaging. Thus, nanomaterials can be leveraged in the form of nanocomposites in food packaging design by melt compounding, solvent casting, lamination or electrohydrodynamic processing (EHDP) to promote passive, active, and even bioactive properties such as barrier, antimicrobial, antioxidant, and oxygen scavenging roles and the controlled release of functional ingredients. These attributes can be exerted either by the intended or non-intended migration of the nanomaterials or by the active substances they may carry. Lastly, nanomaterials can be advantageously applied to provide unique opportunities in Circular Bioeconomy strategies in relation to the valorization of, for instance, agro-industrial wastes and food processing by-products.

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1610
Author(s):  
Raluca Nicoleta Darie-Niță ◽  
Maria Râpă ◽  
Morten Sivertsvik ◽  
Jan Thomas Rosnes ◽  
Elisabeta Elena Popa ◽  
...  

Several recipes based on PLA, bio-plasticizers, and active agents such as vitamin E and cold-pressed rosehip seed oil encapsulated into chitosan by the emulsion method named here as chitosan modified (CS-M) were elaborated by melt compounding for food packaging applications. Resulted biocomposites have been investigated from the point of view of physical-mechanical, thermal, barrier, antimicrobial, and antioxidant properties to select the formulations with the optimum features to produce food trays and films for packaging applications. The obtained results showed that the elaborated formulations exhibit tensile strength and flexibility dependent on their composition being either rigid or flexible, as well as antimicrobial and antioxidant activity, which will potentially lead to prolonged use for food packaging. The recipe with PLA matrix and 40:60 Lapol®108 as masterbarch/polyethylene glycol (MB/PEG) bio-plasticizers ratio was distinguished by an improvement of over 100 times in terms of flexibility compared with neat PLA, while the highest antioxidant activity (36.27%) was recorded for the sample containing a CS-M and MB/PEG ratio of 60:40. An enhancement of ~50% for the water vapor barrier was recorded for PLA/CS-M_100:0 material. By modulating the MB and PEG bio-plasticizers ratio, the design of new eco-friendly food packaging materials with antimicrobial/antioxidant characteristics by using the existing technologies for processing synthetic polymers (melt mixing, compounding, pressing, thermoforming) has been successfully realized.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 7
Author(s):  
Sofia Agriopoulou ◽  
Eygenia Stamatelopoulou ◽  
Vasiliki Skiada ◽  
Panagiotis Tsarouhas ◽  
Theodoros Varzakas

The contribution of nanomaterials to the development of food packaging systems has been enormous in last years. Nanomaterial is defined as material having one or more dimensions in the range of 1–100 nm. Nano-sized materials change their optical, magnetic, electrical, and other properties, and for this reason are widely used in food packaging. Nanoparticles (NPs), nanocomposites (NCs), nanoclays (NCs), nanoemulsions (NEs), nanosensors (NSs), and nanostructures (NSTs) are some of the important nanomaterials that have been used in food packaging and preservation. Nanomaterials can offer solutions in food packaging and preservation through active and smart packaging, edible coatings, and the development of a wide range of capable nanosystems. Therefore, nanomaterials can be considered as important tools and efficient options for controlling, limiting, and improving safety parameters and food quality that are highly desirable in food technology. Innovative nanomaterials even achieve real-time food quality monitoring, providing an efficient option in food preservation applications. The toxicological risk posed by the use of nanomaterials in food packaging, particularly the case of edible nano-packaging, is significantly linked to the migration phenomenon as well as the occurrence of toxic effects on the exposed human body.


Coatings ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 41 ◽  
Author(s):  
Marina Ramos ◽  
Arantzazu Valdés ◽  
Ana Beltrán ◽  
María Garrigós

This review discusses the latest advances in the composition of gelatin-based edible films and coatings, including nanoparticle addition, and their properties are reviewed along their potential for application in the food packaging industry. Gelatin is an important biopolymer derived from collagen and is extensively used by various industries because of its technological and functional properties. Nowadays, a very wide range of components are available to be included as additives to improve its properties, as well as its applications and future potential. Antimicrobials, antioxidants and other agents are detailed due to the fact that an increasing awareness among consumers regarding healthy lifestyle has promoted research into novel techniques and additives to prolong the shelf life of food products. Thanks to its ability to improve global food quality, gelatin has been particularly considered in food preservation of meat and fish products, among others.


2021 ◽  
Author(s):  
Urmila Choudhary ◽  
Basant Kumar Bhinchhar ◽  
Vinod Kumar Paswan ◽  
Sheela Kharkwal ◽  
Satya Prakash Yadav ◽  
...  

Mostly, food packaging employs synthetic materials obtained from nonrenewable sources. These packaging materials are based on petrochemicals and cause substantial environmental problems by producing massive amounts of non-biodegradable solid wastes. Edible coatings and films are considered as the potential solution to these problems of non-biodegradable packaging solid wastes for maintaining food-environment interactions, retaining food quality, and extending shelf life. In addition, edible coatings and films offer prevention from microbial spoilage of packed foods by controlling moisture and gas barrier characteristics. Increasing environmental concerns and consumer demands for high-quality eco-friendly packaging have fueled the advancement of innovative packaging technologies, for instance, the development of biodegradable films from renewable agricultural and food processing industry wastes. Therefore, the current chapter presents the application of edible coatings and films as an alternative to conventional packaging, emphasizing the fundamental characterization that these biodegradable packaging should hold for specific applications such as food preservation and shelf life enhancement. The primary employed components (e.g., biopolymers, bioactive, and additives components), manufacturing processes (for edible films or coatings), and their application to specific foods have all been given special consideration in this chapter. Besides, a future vision for the use of edible films and coatings as quality indicators for perishable foods is presented.


2019 ◽  
Vol 5 (2) ◽  
pp. 83-99
Author(s):  
Francisco Jesús Ferreiro Seoane ◽  
Manuel Octavio Del Campo Villares

Background: The objective of this article is to analyse if there are significant relationships between the most valuable companies operating in Spain regarding professional performance, according to nationality and location within their Autonomous Communities or any superior aggrupation. To do that, a sample of 100 companies has been selected. Methods: The methodology followed is based on the selection of the 100 highestvalued companies from the point of view of Human Resources’ policy for the period 2013-2016 and through the measurement of six factors: Talent Management, Retribution, Work environment, CSR, Training and Employees’ perception, and classified by nationality and location. The study was based on 12 hypotheses, using the Unifactorial Variance’s Analysis, Pearson correlations and regressions. One limitation could be the fact that this study refers to a particular period, focusing on Spain and the variables mentioned, based on questionnaires. The added value of this work lies on the newness as it has a quantitative character, and on the fact that most of the hypotheses do not comply. Results and Conclusion: This allows to deny certain beliefs that affirm that European and American companies operating in Spain are more attractive than the Spanish or the Mediterranean ones.


2021 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Dimitris Koryzis ◽  
Apostolos Dalas ◽  
Dimitris Spiliotopoulos ◽  
Fotios Fitsilis

Societies are entering the age of technological disruption, which also impacts governance institutions such as parliamentary organizations. Thus, parliaments need to adjust swiftly by incorporating innovative methods into their organizational culture and novel technologies into their working procedures. Inter-Parliamentary Union World e-Parliament Reports capture digital transformation trends towards open data production, standardized and knowledge-driven business processes, and the implementation of inclusive and participatory schemes. Nevertheless, there is still a limited consensus on how these trends will materialize into specific tools, products, and services, with added value for parliamentary and societal stakeholders. This article outlines the rapid evolution of the digital parliament from the user perspective. In doing so, it describes a transformational framework based on the evaluation of empirical data by an expert survey of parliamentarians and parliamentary administrators. Basic sets of tools and technologies that are perceived as vital for future parliamentary use by intra-parliamentary stakeholders, such as systems and processes for information and knowledge sharing, are analyzed. Moreover, boundary conditions for development and implementation of parliamentary technologies are set and highlighted. Concluding recommendations regarding the expected investments, interdisciplinary research, and cross-sector collaboration within the defined framework are presented.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3052
Author(s):  
Diego Cardoza ◽  
Inmaculada Romero ◽  
Teresa Martínez ◽  
Encarnación Ruiz ◽  
Francisco J. Gallego ◽  
...  

A biorefinery integrated process based on lignocellulosic feedstock is especially interesting in rural areas with a high density of agricultural and agro-industrial wastes, which is the case for olive crop areas and their associated industries. In the region of Andalusia, in the south of Spain, the provinces of Jaén, Córdoba and Seville accumulate more than 70% of the olive wastes generated in Spain. Therefore, the valorisation of these wastes is a matter of interest from both an environmental and a social point of view. The olive biorefinery involves a multi-product process from different raw materials: olive leaves, exhausted olive pomace, olive stones and olive tree pruning residues. Biorefinery processes associated with these wastes would allow their valorisation to produce bioenergy and high value-added renewable products. In this work, using geographic information system tools, the biomass from olive crop fields, mills and olive pomace-extracting industries, where these wastes are generated, was determined and quantified in the study area. In addition, the vulnerability of the territory was evaluated through an environmental and territorial analysis that allowed for the determination of the reception capacity of the study area. Then, information layers corresponding to the availability of the four biomass wastes, and layers corresponding to the environmental fragility of the study area were overlapped and they resulted in an overall map. This made it possible to identify the best areas for the implementation of the biorefineries based on olive-derived biomass. Finally, as an example, three zones were selected for this purpose. These locations corresponded to low fragility areas with a high availability of biomass (more than 300,000 tons/year) in a 30 km radius, which would ensure the biomass supply.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 767
Author(s):  
Elsa Díaz-Montes ◽  
Roberto Castro-Muñoz

Some of the current challenges faced by the food industry deal with the natural ripening process and the short shelf-life of fresh and minimally processed products. The loss of vitamins and minerals, lipid oxidation, enzymatic browning, and growth of microorganisms have been the main issues for many years within the innovation and improvement of food packaging, which seeks to preserve and protect the product until its consumption. Most of the conventional packaging are petroleum-derived plastics, which after product consumption becomes a major concern due to environmental damage provoked by their difficult degradation. In this sense, many researchers have shown interest in edible films and coatings, which represent an environmentally friendly alternative for food packaging. To date, chitosan (CS) is among the most common materials in the formulation of these biodegradable packaging together with polysaccharides, proteins, and lipids. The good film-forming and biological properties (i.e., antimicrobial, antifungal, and antiviral) of CS have fostered its usage in food packaging. Therefore, the goal of this paper is to collect and discuss the latest development works (over the last five years) aimed at using CS in the manufacture of edible films and coatings for food preservation. Particular attention has been devoted to relevant findings in the field, together with the novel preparation protocols of such biodegradable packaging. Finally, recent trends in new concepts of composite films and coatings are also addressed.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1263
Author(s):  
Cornelia Vasile ◽  
Mihaela Baican

Food packaging is designed to protect foods, to provide required information about the food, and to make food handling convenient for distribution to consumers. Packaging has a crucial role in the process of food quality, safety, and shelf-life extension. Possible interactions between food and packaging are important in what is concerning food quality and safety. This review tries to offer a picture of the most important types of active packaging emphasizing the controlled/target release antimicrobial and/or antioxidant packaging including system design, different methods of polymer matrix modification, and processing. The testing methods for the appreciation of the performance of active food packaging, as well as mechanisms and kinetics implied in active compounds release, are summarized. During the last years, many fast advancements in packaging technology appeared, including intelligent or smart packaging (IOSP), (i.e., time–temperature indicators (TTIs), gas indicators, radiofrequency identification (RFID), and others). Legislation is also discussed.


Author(s):  
Karine Kutrowski ◽  
Rob Bos ◽  
Jean-Re´gis Piccardino ◽  
Marie Pajot

On January 4th 2007 TIGF published the following invitation for tenders: “Development and Provision of a Pipeline Integrity Management System”. The project was awarded to Bureau Veritas (BV), who proposed to meet the requirements of TIGF with the Threats and Mitigations module of the PiMSlider® suite extended with some customized components. The key features of the PiMSlider® suite are: • More than only IT: a real integrity philosophy, • A simple intuitive tool to store, display and update pipeline data, • Intelligent search utilities to locate specific information about the pipeline and its surrounding, • A scalable application, with a potentially unlimited number of users, • Supervision (during and after implementation) by experienced people from the oil and gas industry. This paper first introduces TIGF and the consortium BV – ATP. It explains in a few words the PIMS philosophy captured in the PiMSlider® suite and focuses on the added value of the pipeline Threats and Mitigations module. Using this module allows the integrity analyst to: • Prioritize pipeline segments for integrity surveillance purposes, • Determine most effective corrective actions, • Assess the benefits of corrective actions by means of what-if scenarios, • Produce a qualitative threats assessment for further use in the integrity management plan, • Optimize integrity aspects from a design, maintenance and operational point of view, • Investigate the influence of different design criteria for pipeline segments. To conclude, TIGF presents the benefits of the tool for their Integrity Management department and for planning inspection and for better knowledge of their gas transmission grid.


Sign in / Sign up

Export Citation Format

Share Document