scholarly journals Optical Nanoantennas for Photovoltaic Applications

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 422
Author(s):  
Francisco Duarte ◽  
João Paulo N. Torres ◽  
António Baptista ◽  
Ricardo A. Marques Lameirinhas

In the last decade, the development and progress of nanotechnology has enabled a better understanding of the light–matter interaction at the nanoscale. Its unique capability to fabricate new structures at atomic scale has already produced novel materials and devices with great potential applications in a wide range of fields. In this context, nanotechnology allows the development of models, such as nanometric optical antennas, with dimensions smaller than the wavelength of the incident electromagnetic wave. In this article, the behavior of optical aperture nanoantennas, a metal sheet with apertures of dimensions smaller than the wavelength, combined with photovoltaic solar panels is studied. This technique emerged as a potential renewable energy solution, by increasing the efficiency of solar cells, while reducing their manufacturing and electricity production costs. The objective of this article is to perform a performance analysis, using COMSOL Multiphysics software, with different materials and designs of nanoantennas and choosing the most suitable one for use on a solar photovoltaic panel.

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1584
Author(s):  
Jinzhao Li ◽  
Junyu Li ◽  
Shudao Zhou ◽  
Fei Yi

Photodetectors are the essential building blocks of a wide range of optical systems. Typical photodetectors only convert the intensity of light electrical output signals, leaving other electromagnetic parameters, such as the frequencies, phases, and polarization states unresolved. Metasurfaces are arrays of subwavelength structures that can manipulate the amplitude, phase, frequency, and polarization state of light. When combined with photodetectors, metasurfaces can enhance the light-matter interaction at the pixel level and also enable the detector pixels to resolve more electromagnetic parameters. In this paper, we review recent research efforts in merging metasurfaces with photodetectors towards improved detection performances and advanced detection schemes. The impacts of merging metasurfaces with photodetectors, on the architecture of optical systems, and potential applications are also discussed.


Author(s):  
P.E. Russell ◽  
I.H. Musselman

Scanning tunneling microscopy (STM) has evolved rapidly in the past few years. Major developments have occurred in instrumentation, theory, and in a wide range of applications. In this paper, an overview of the application of STM and related techniques to polymers will be given, followed by a discussion of current research issues and prospects for future developments. The application of STM to polymers can be conveniently divided into the following subject areas: atomic scale imaging of uncoated polymer structures; topographic imaging and metrology of man-made polymer structures; and modification of polymer structures. Since many polymers are poor electrical conductors and hence unsuitable for use as a tunneling electrode, the related atomic force microscopy (AFM) technique which is capable of imaging both conductors and insulators has also been applied to polymers.The STM is well known for its high resolution capabilities in the x, y and z axes (Å in x andy and sub-Å in z). In addition to high resolution capabilities, the STM technique provides true three dimensional information in the constant current mode. In this mode, the STM tip is held at a fixed tunneling current (and a fixed bias voltage) and hence a fixed height above the sample surface while scanning across the sample surface.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1566
Author(s):  
Oliver J. Pemble ◽  
Maria Bardosova ◽  
Ian M. Povey ◽  
Martyn E. Pemble

Chitosan-based films have a diverse range of potential applications but are currently limited in terms of commercial use due to a lack of methods specifically designed to produce thin films in high volumes. To address this limitation directly, hydrogels prepared from chitosan, chitosan-tetraethoxy silane, also known as tetraethyl orthosilicate (TEOS) and chitosan-glutaraldehyde have been used to prepare continuous thin films using a slot-die technique which is described in detail. By way of preliminary analysis of the resulting films for comparison purposes with films made by other methods, the mechanical strength of the films produced was assessed. It was found that as expected, the hybrid films made with TEOS and glutaraldehyde both show a higher yield strength than the films made with chitosan alone. In all cases, the mechanical properties of the films were found to compare very favorably with similar measurements reported in the literature. In order to assess the possible influence of the direction in which the hydrogel passes through the slot-die on the mechanical properties of the films, testing was performed on plain chitosan samples cut in a direction parallel to the direction of travel and perpendicular to this direction. It was found that there was no evidence of any mechanical anisotropy induced by the slot die process. The examples presented here serve to illustrate how the slot-die approach may be used to create high-volume, high-area chitosan-based films cheaply and rapidly. It is suggested that an approach of the type described here may facilitate the use of chitosan-based films for a wide range of important applications.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 318
Author(s):  
Paula García Milla ◽  
Rocío Peñalver ◽  
Gema Nieto

Moringa oleifera belongs to the Moringaceae family and is the best known of the native Moringa oleifera genus. For centuries, it has been used as a system of Ayurvedic and Unani medicine and has a wide range of nutritional and bioactive compounds, including proteins, essential amino acids, carbohydrates, lipids, fibre, vitamins, minerals, phenolic compounds, phytosterols and others. These characteristics allow it to have pharmacological properties, including anti-diabetic, anti-inflammatory, anticarcinogenic, antioxidant, cardioprotective, antimicrobial and hepatoprotective properties. The entire Moringa oleifera plant is edible, including its flowers, however, it is not entirely safe, because of compounds that have been found mainly in the root and bark, so the leaf was identified as the safest. Moringa oleifera is recognised as an excellent source of phytochemicals, with potential applications in functional and medicinal food preparations due to its nutritional and medicinal properties; many authors have experimented with incorporating it mainly in biscuits, cakes, brownies, meats, juices and sandwiches. The results are fascinating, as the products increase their nutritional value; however, the concentrations cannot be high, as this affects the organoleptic characteristics of the supplemented products. The aim of this study is to review the application of Moringa oleifera in bakery products, which will allow the creation of new products that improve their nutritional and functional value.


Author(s):  
Mamou Diallo ◽  
Servé W. M. Kengen ◽  
Ana M. López-Contreras

AbstractThe Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 142
Author(s):  
Hu Li ◽  
Raffaello Papadakis

Graphene is a material with outstanding properties and numerous potential applications in a wide range of research and technology areas, spanning from electronics, energy materials, sensors, and actuators to life-science and many more. However, the insolubility and poor dispersibility of graphene are two major problems hampering its use in certain applications. Tethering mono-, di-, or even poly-saccharides on graphene through click-chemistry is gaining more and more attention as a key modification approach leading to new graphene-based materials (GBM) with improved hydrophilicity and substantial dispersibility in polar solvents, e.g., water. The attachment of (poly)saccharides on graphene further renders the final GBMs biocompatible and could open new routes to novel biomedical and environmental applications. In this review, recent modifications of graphene and other carbon rich materials (CRMs) through click chemistry are reviewed.


Author(s):  
Naglaa Kamel Bahgaat ◽  
Nariman Abdel Salam ◽  
Monika Mady Roshdy ◽  
Sandy Abd Elrasheed Sakr

Rapid growth in mobile networks and the increase of the number of cellular base stations requires more energy sources, but the traditional sources of energy cause pollution and environmental problems. Therefore, modern facilities tend to use renewable energy sources instead of traditional sources. One renewable source is the photovoltaic panel, which made from semiconductor materials which absorb sunlight to generate electricity. This article discusses the importance of using solar panels to produce energy for mobile stations and also a solution to some environmental problems such as pollution. This article provides a design for a solar-power plant to feed the mobile station. Also, in this article is a prediction of all loads, the power consumed, the number of solar panels used, and solar batteries can be used to store electrical energy. Finally, an estimation of the costs of all components will be presented. Good discussion and conclusion will be presented about the results obtained. The results obtained are promising. In addition, a future plan is described to complete this important study.


2018 ◽  
Vol 64 (4) ◽  
pp. 656-679 ◽  
Author(s):  
Jeffrey D Freeman ◽  
Lori M Rosman ◽  
Jeremy D Ratcliff ◽  
Paul T Strickland ◽  
David R Graham ◽  
...  

Abstract BACKGROUND Advancements in the quality and availability of highly sensitive analytical instrumentation and methodologies have led to increased interest in the use of microsamples. Among microsamples, dried blood spots (DBS) are the most well-known. Although there have been a variety of review papers published on DBS, there has been no attempt at describing the full range of analytes measurable in DBS, or any systematic approach published for characterizing the strengths and weaknesses associated with adoption of DBS analyses. CONTENT A scoping review of reviews methodology was used for characterizing the state of the science in DBS. We identified 2018 analytes measured in DBS and found every common analytic method applied to traditional liquid samples had been applied to DBS samples. Analytes covered a broad range of biomarkers that included genes, transcripts, proteins, and metabolites. Strengths of DBS enable its application in most clinical and laboratory settings, and the removal of phlebotomy and the need for refrigeration have expanded biosampling to hard-to-reach and vulnerable populations. Weaknesses may limit adoption in the near term because DBS is a nontraditional sample often requiring conversion of measurements to plasma or serum values. Opportunities presented by novel methodologies may obviate many of the current limitations, but threats around the ethical use of residual samples must be considered by potential adopters. SUMMARY DBS provide a wide range of potential applications that extend beyond the reach of traditional samples. Current limitations are serious but not intractable. Technological advancements will likely continue to minimize constraints around DBS adoption.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4504
Author(s):  
Muhanna Al-shaibani ◽  
Radin Maya Saphira Radin Mohamed ◽  
Nik Sidik ◽  
Hesham Enshasy ◽  
Adel Al-Gheethi ◽  
...  

The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021. Screening and exploring the available literature relating to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains of this major microorganism class, producing unique novel bioactive compounds. The knowledge gained from these studies is intended to encourage scientists in the natural product discovery field to identify and characterise novel strains containing various bioactive gene clusters with potential clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments represent an important source of a wide range of bioactive compounds. Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic, anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant economically due to their potential applications in the food, nutrition and health industries and thus support our communities’ well-being.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
David M. Smith ◽  
Verena Schüller ◽  
Carsten Forthmann ◽  
Robert Schreiber ◽  
Philip Tinnefeld ◽  
...  

Nanometer-sized polyhedral wire-frame objects hold a wide range of potential applications both as structural scaffolds as well as a basis for synthetic nanocontainers. The utilization of DNA as basic building blocks for such structures allows the exploitation of bottom-up self-assembly in order to achieve molecular programmability through the pairing of complementary bases. In this work, we report on a hollow but rigid tetrahedron framework of 75 nm strut length constructed with the DNA origami method. Flexible hinges at each of their four joints provide a means for structural variability of the object. Through the opening of gaps along the struts, four variants can be created as confirmed by both gel electrophoresis and direct imaging techniques. The intrinsic site addressability provided by this technique allows the unique targeted attachment of dye and/or linker molecules at any point on the structure's surface, which we prove through the superresolution fluorescence microscopy technique DNA PAINT.


Sign in / Sign up

Export Citation Format

Share Document