scholarly journals Gardenia Jasminoides Ameliorates Antibiotic-Associated Aggravation of DNCB-Induced Atopic Dermatitis by Restoring the Intestinal Microbiome Profile

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1349
Author(s):  
Hyo In Kim ◽  
Se Hyang Hong ◽  
Seo Yeon Lee ◽  
Jin Mo Ku ◽  
Min Jeong Kim ◽  
...  

The intestinal microbiome is considered one of the key regulators of health. Accordingly, the severity of atopic dermatitis (AD) is mediated by the skin and intestinal microbiome environment. In this study, while evaluating the aggravation in AD symptoms by the antibiotics cocktail (ABX)-induced depletion of the intestinal microbiome, we sought to verify the effect of Gardenia jasminoides (GJ), a medicinal herb used for inflammatory diseases, on AD regarding its role on the intestinal microbiome. To verify the aggravation in AD symptoms induced by the depletion of the intestinal microbiome, we established a novel mouse model by administrating an ABX to create a microbiome-free environment in the intestine, and then applied 2,4-dinitrochlorobenzene (DNCB) to induce an AD-like skin inflammatory response. While ABX treatment aggravated AD-like symptoms, the 2-week administration of GJ improved these pathological changes. DNCB application upregulated immune cell count and serum cytokine expression, which were alleviated by GJ. Moreover, pathological alterations by antibiotics and DNCB, including histological damage of the intestine and the intestinal expression of IL-17, were recovered in GJ-treated mice. The beneficial effect of GJ was due to the restoration of the intestinal microbiome composition. Overall, we suggest GJ as a potential therapeutic agent for AD due to its regulation of the intestinal microbiome.

2021 ◽  
Vol 9 (9) ◽  
pp. 1930
Author(s):  
Yi-Wen Tsai ◽  
Jia-Ling Dong ◽  
Yun-Jie Jian ◽  
Shin-Huei Fu ◽  
Ming-Wei Chien ◽  
...  

Autoimmunity is a complex and multifaceted process that contributes to widespread functional decline that affects multiple organs and tissues. The pandemic of autoimmune diseases, which are a global health concern, augments in both the prevalence and incidence of autoimmune diseases, including type 1 diabetes, multiple sclerosis, and rheumatoid arthritis. The development of autoimmune diseases is phenotypically associated with gut microbiota-modulated features at the molecular and cellular levels. The etiology and pathogenesis of autoimmune diseases comprise the alterations of immune systems with the innate and adaptive immune cell infiltration into specific organs and the augmented production of proinflammatory cytokines stimulated by commensal microbiota. However, the relative importance and mechanistic interrelationships between the gut microbial community and the immune system during progression of autoimmune diseases are still not well understood. In this review, we describe studies on the profiling of gut microbial signatures for the modulation of immunological homeostasis in multiple inflammatory diseases, elucidate their critical roles in the etiology and pathogenesis of autoimmune diseases, and discuss the implications of these findings for these disorders. Targeting intestinal microbiome and its metabolomic associations with the phenotype of autoimmunity will enable the progress of developing new therapeutic strategies to counteract microorganism-related immune dysfunction in these autoimmune diseases.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1681
Author(s):  
Lucia Sophie Kilian ◽  
Derk Frank ◽  
Ashraf Yusuf Rangrez

Chronic inflammation, the activation of immune cells and their cross-talk with cardiomyocytes in the pathogenesis and progression of heart diseases has long been overlooked. However, with the latest research developments, it is increasingly accepted that a vicious cycle exists where cardiomyocytes release cardiocrine signaling molecules that spiral down to immune cell activation and chronic state of low-level inflammation. For example, cardiocrine molecules released from injured or stressed cardiomyocytes can stimulate macrophages, dendritic cells, neutrophils and even T-cells, which then subsequently increase cardiac inflammation by co-stimulation and positive feedback loops. One of the key proteins involved in stress-mediated cardiomyocyte signal transduction is a small GTPase RhoA. Importantly, the regulation of RhoA activation is critical for effective immune cell response and is being considered as one of the potential therapeutic targets in many immune-cell-mediated inflammatory diseases. In this review we provide an update on the role of RhoA at the juncture of immune cell activation, inflammation and cardiac disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shanthi G. Parkar ◽  
Jovyn K. T. Frost ◽  
Doug Rosendale ◽  
Halina M. Stoklosinski ◽  
Carel M. H. Jobsis ◽  
...  

AbstractEight plant-based foods: oat flour and pureed apple, blackcurrant, carrot, gold- and green-fleshed kiwifruit, pumpkin, sweetcorn, were pre-digested and fermented with pooled inocula of weaning infants’ faecal bacteria in an in vitro hindgut model. Inulin and water were included as controls. The pre-digested foods were analysed for digestion-resistant fibre-derived sugar composition and standardised to the same total fibre concentration prior to fermentation. The food-microbiome interactions were then characterised by measuring microbial acid and gas metabolites, microbial glycosidase activity and determining microbiome structure. At the physiologically relevant time of 10 h of fermentation, the xyloglucan-rich apple and blackcurrant favoured a propiogenic metabolic and microbiome profile with no measurable gas production. Glucose-rich, xyloglucan-poor pumpkin caused the greatest increases in lactate and acetate (indicative of high fermentability) commensurate with increased bifidobacteria. Glucose-rich, xyloglucan-poor oats and sweetcorn, and arabinogalactan-rich carrot also increased lactate and acetate, and were more stimulatory of clostridial families, which are indicative of increased microbial diversity and gut and immune health. Inulin favoured a probiotic-driven consortium, while water supported a proteolytic microbiome. This study shows that the fibre-derived sugar composition of complementary foods may shape infant gut microbiome structure and metabolic activity, at least in vitro.


2018 ◽  
Vol 18 (5) ◽  
pp. 645-651 ◽  
Author(s):  
Anja Schwiebs ◽  
Heinfried H. Radeke

This review highlights the multiple properties of the birch bark-derived pentacyclic triterpene betulin with special focus on its pharmacological activity in cancer and inflammation. While less well characterized compared to its hydrophilic derivative, betulinic acid, it exhibits potent anticancer activity described in many publications. Indeed, underinvestigated are its immunomodulatory functions in inflammatory diseases that appeared to enhance innate immune cell activities in an adjuvant-like fashion towards an interleukin-12 driven antitumor immunity. Herein, we like to emphasize the simultaneous and dual function of betulin on the basis of recent investigations of the tumor microenvironment and enlighten the potential use of betulin in the control of inflammation-associated carcinogenesis.


2022 ◽  
Vol 23 (1) ◽  
pp. 553
Author(s):  
Ga-Yul Min ◽  
Ji-Hye Kim ◽  
Tae-In Kim ◽  
Won-Kyung Cho ◽  
Ju-Hye Yang ◽  
...  

Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with a type 2 T helper cell (Th2) immune response. The IndigoPulverata Levis extract (CHD) is used in traditional Southeast Asian medicine; however, its beneficial effects on AD remain uninvestigated. Therefore, we investigated the therapeutic effects of CHD in 2,4-dinitrochlorobenzene (DNCB)-induced BALB/c mice and tumor necrosis factor (TNF)-α- and interferon gamma (IFN)-γ-stimulated HaCaT cells. We evaluated immune cell infiltration, skin thickness, and the serum IgE and TNF-α levels in DNCB-induced AD mice. Moreover, we measured the expression levels of pro-inflammatory cytokines, mitogen-activated protein kinase (MAPK), and the nuclear factor-kappa B (NF-κB) in the mice dorsal skin. We also studied the effect of CHD on the translocation of NF-κB p65 and inflammatory chemokines in HaCaT cells. Our in vivo results revealed that CHD reduced the dermis and epidermis thicknesses and inhibited immune cell infiltration. Furthermore, it suppressed the proinflammatory cytokine expression and MAPK and NF-κB phosphorylations in the skin tissue and decreased serum IgE and TNF-α levels. In vitro results indicated that CHD downregulated inflammatory chemokines and blocked NF-κB p65 translocation. Thus, we deduced that CHD is a potential drug candidate for AD treatment.


2021 ◽  
Vol 56 (4) ◽  
pp. 413-421
Author(s):  
Raluca A. CORB ARON ◽  
◽  
Delia M. TIT ◽  
Radu MOLERIU ◽  
Cosmin M. VESA ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Laura S. Peterson ◽  
Julien Hedou ◽  
Edward A. Ganio ◽  
Ina A. Stelzer ◽  
Dorien Feyaerts ◽  
...  

Although most causes of death and morbidity in premature infants are related to immune maladaptation, the premature immune system remains poorly understood. We provide a comprehensive single-cell depiction of the neonatal immune system at birth across the spectrum of viable gestational age (GA), ranging from 25 weeks to term. A mass cytometry immunoassay interrogated all major immune cell subsets, including signaling activity and responsiveness to stimulation. An elastic net model described the relationship between GA and immunome (R=0.85, p=8.75e-14), and unsupervised clustering highlighted previously unrecognized GA-dependent immune dynamics, including decreasing basal MAP-kinase/NFκB signaling in antigen presenting cells; increasing responsiveness of cytotoxic lymphocytes to interferon-α; and decreasing frequency of regulatory and invariant T cells, including NKT-like cells and CD8+CD161+ T cells. Knowledge gained from the analysis of the neonatal immune landscape across GA provides a mechanistic framework to understand the unique susceptibility of preterm infants to both hyper-inflammatory diseases and infections.


Author(s):  
Abdullah Alyoussef

<p class="abstract"><strong>Background:</strong> Atopic dermatitis (AD) is considered a chronic recurrent inflammatory skin disease. In addition, crocin is the major carotenoid compound found in Gardenia jasminoides. It is previously proved to produce anti-inflammatory actions. Therefore, we conducted this research to investigate the therapeutic effects of crocin on a mice model of AD.</p><p class="abstract"><strong>Methods:</strong> Mice were investigated for the number of scratches and dermatitis score. Skin was isolated and used for measurements of gene and protein expression of β-catenin, NFκB, TNF-α and IL-1β.<strong></strong></p><p class="abstract"><strong>Results:</strong> Authors found that crocin significantly reduced the number of scratches, ear thickness and dermatitis score. In addition, crocin ameliorated AD-induced elevation in the expression of β-catenin, NFκB, TNF-α and IL-1β.</p><p class="abstract"><strong>Conclusions:</strong> Crocin ameliorated DNCB-induced AD in mice via blockage of β-catenin with subsequent reduction in inflammatory pathway.</p><p class="abstract"> </p>


2020 ◽  
Vol 75 (6) ◽  
pp. 577-584
Author(s):  
G. R. Bikbavova ◽  
M. A. Livzan

In recent decades, an increase in the incidence of ulcerative colitis has been observed throughout the world. The purpose of this review is to generalize the available information on the influence of environmental factors and intestinal microbiome on the occurrence and development of ulcerative colitis, the role of bacteria metabolism products in the pathogenesis of the disease. Studied literature, we came to the conclusion that lifestyle in the era of post-industrial society has a significant impact on the microbial composition of the intestine and leads to changes in its diversity in patients suffering from ulcerative colitis. The changes include a decrease in the number of residential flora with anti-inflammatory activity, which synthesize short-chain fatty acids, and an increase in the number of potentially pathogenic and pathogenic microorganisms. Within the phylums Firmicutes and Proteobacteria, the proportional ratio changes. The combination of aggression factors (deterioration of the intestinal microbiome composition, the presence of aggressive intestinal metabolites) leads to intestinal mucosa permeability disfunction, impairing its barrier function. Food and bacterial agents can penetrate deeper layers of the intestinal wall through mucosal defects, which then stimulate the development of inflammatory and immune responses.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Lelde Lauka ◽  
Elisa Reitano ◽  
Maria Clotilde Carra ◽  
Federica Gaiani ◽  
Paschalis Gavriilidis ◽  
...  

Abstract Objectives Growing evidence supports the role of the intestinal microbiome in the carcinogenesis of colorectal cancers, but its impact on colorectal cancer surgery outcomes is not clearly defined. This systematic review aimed to analyze the association between intestinal microbiome composition and postoperative complication and survival following colorectal cancer surgery. Methods A systematic review was conducted according to the 2009 PRISMA guidelines. Two independent reviewers searched the literature in a systematic manner through online databases, including Medline, Scopus, Embase, Cochrane Oral Health Group Specialized Register, ProQuest Dissertations and Theses Database, and Google Scholar. Human studies investigating the association between the intestinal microbiome and the short-term (anastomotic leakage, surgical site infection, postoperative ileus) and long-term outcomes (cancer-specific mortality, overall and disease-free survival) of colorectal cancer surgery were selected. Patients with any stage of colorectal cancer were included. The Newcastle-Ottawa scale for case-control and cohort studies was used for the quality assessment of the selected articles. Results Overall, 8 studies (7 cohort studies and 1 case-control) published between 2014 and 2018 were included. Only one study focused on short-term surgical outcomes, showing that anastomotic leakage is associated with low microbial diversity and abundance of Lachnospiraceae and Bacteroidaceae families in the non-cancerous resection lines of the stapled anastomoses of colorectal cancer patients. The other 7 studies focused on long-term oncological outcomes, including survival and cancer recurrence. The majority of the studies (5/8) found that a higher level of Fusobacterium nucleatum adherent to the tumor tissue is associated with worse oncological outcomes, in particular, increased cancer-specific mortality, decreased median and overall survival, disease-free and cancer-specific survival rates. Also a high abundance of Bacteroides fragilis was found to be linked to worse outcomes, whereas the relative abundance of the Prevotella-co-abundance group (CAG), the Bacteroides CAG, and the pathogen CAG as well as Faecalibacterium prausnitzii appeared to be associated with better survival. Conclusions Based on the limited available evidence, microbiome composition may be associated with colorectal cancer surgery outcomes. Further studies are needed to elucidate the role of the intestinal microbiome as a prognostic factor in colorectal cancer surgery and its possible clinical implications.


Sign in / Sign up

Export Citation Format

Share Document