scholarly journals Infants’ First Solid Foods: Impact on Gut Microbiota Development in Two Intercontinental Cohorts

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2639
Author(s):  
Chiara-Maria Homann ◽  
Connor A. J. Rossel ◽  
Sara Dizzell ◽  
Liene Bervoets ◽  
Julia Simioni ◽  
...  

The introduction of solid foods is an important dietary event during infancy that causes profound shifts in the gut microbial composition towards a more adult-like state. Infant gut bacterial dynamics, especially in relation to nutritional intake remain understudied. Over 2 weeks surrounding the time of solid food introduction, the day-to-day dynamics in the gut microbiomes of 24 healthy, full-term infants from the Baby, Food & Mi and LucKi-Gut cohort studies were investigated in relation to their dietary intake. Microbial richness (observed species) and diversity (Shannon index) increased over time and were positively associated with dietary diversity. Microbial community structure (Bray–Curtis dissimilarity) was determined predominantly by individual and age (days). The extent of change in community structure in the introductory period was negatively associated with daily dietary diversity. High daily dietary diversity stabilized the gut microbiome. Bifidobacterial taxa were positively associated, while taxa of the genus Veillonella, that may be the same species, were negatively associated with dietary diversity in both cohorts. This study furthers our understanding of the impact of solid food introduction on gut microbiome development in early life. Dietary diversity seems to have the greatest impact on the gut microbiome as solids are introduced.

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0248924
Author(s):  
Sara Dizzell ◽  
Jennifer C. Stearns ◽  
Jenifer Li ◽  
Niels van Best ◽  
Liene Bervoets ◽  
...  

The first exposures to microbes occur during infancy and it is suggested that this initial colonization influences the adult microbiota composition. Despite the important role that the gut microbiome may have in health outcomes later in life, the factors that influence its development during infancy and early childhood have not been characterized fully. Guidelines about the introduction of solid foods and cessation of breastfeeding, which is thought to have a significant role in the transition to a more adult-like microbiota, are not based on microbiome research. There is even less understanding of approaches used to transition to solid food in the preterm population. The purpose of this study is to identify the impact of early life dietary events on gut microbiome community structures and function among infants born at term and pre-term. We plan to prospectively monitor the gut microbiome of infants during two critical timepoints in microbial development: the introduction of solid foods and cessation from breastmilk. A total of 35 participants from three primary observational birth cohorts (two full-term cohorts and one pre-term cohort) will be enrolled in this sub-study. Participants will be asked to collect stool samples and fill out a study diary before, during and after the introduction of solids and again during weaning from breastmilk. We will use frequent fecal sampling analyzed using 16S rRNA gene profiling, metagenomics, metabolomics, and targeted bacterial culturing to identify and characterize the microbial communities, as well as provide insight into the phenotypic characteristics and functional capabilities of the microbes present during these transitional periods of infancy. This study will provide a comprehensive approach to detailing the effects of dietary transition from breastmilk to a more adult-like solid food diet on the microbiome and in doing so will contribute to evidence-based infant nutrition guidance.


2019 ◽  
Vol 23 (1) ◽  
pp. 94-101 ◽  
Author(s):  
Jane Cleary ◽  
Sayne MC Dalton ◽  
Alexandra Harman ◽  
Ian M Wright

AbstractObjective:The present study compared the age of first solid foods in a cohort of preterm infants with term infants and identified factors influencing timing of solid food introduction.Design:Structured interviews on infant feeding practices, growth and medical status at term equivalence and at 3, 6, 9 and 12 months corrected postnatal age. The age of solid food introduction was compared between term and preterm infants, and the influence of maternal, infant and milk feeding factors was assessed.Setting:This prospective longitudinal study recruited primary carers of preterm and term infants from a regional metropolitan referral hospital in eastern Australia.Participants:One hundred and fifty infants (preterm, n 85; term, n 65).Results:When corrected for prematurity, preterm infants received solid foods before the recommended age for the introduction of solid foods for term infants. Median introduction of solid foods for preterm infants was 14 weeks corrected age (range 12–17 weeks). This was significantly less than 19 weeks (range 17–21 weeks) for term infants (P < 0·001). Lower maternal education and male gender were associated with earlier introduction of solid foods among preterm infants.Conclusions:Preterm infants are introduced to solid foods earlier than recommended for term infants, taking account of their corrected age. Further research is needed to assess any risk or benefit associated with this pattern and thus to develop clear evidence-based feeding guidelines for preterm infants.


2020 ◽  
Vol 176 (2) ◽  
pp. 253-284 ◽  
Author(s):  
Karen Chiu ◽  
Genoa Warner ◽  
Romana A Nowak ◽  
Jodi A Flaws ◽  
Wenyan Mei

Abstract Since the surge of microbiome research in the last decade, many studies have provided insight into the causes and consequences of changes in the gut microbiota. Among the multiple factors involved in regulating the microbiome, exogenous factors such as diet and environmental chemicals have been shown to alter the gut microbiome significantly. Although diet substantially contributes to changes in the gut microbiome, environmental chemicals are major contaminants in our food and are often overlooked. Herein, we summarize the current knowledge on major classes of environmental chemicals (bisphenols, phthalates, persistent organic pollutants, heavy metals, and pesticides) and their impact on the gut microbiome, which includes alterations in microbial composition, gene expression, function, and health effects in the host. We then discuss health-related implications of gut microbial changes, which include changes in metabolism, immunity, and neurological function.


2020 ◽  
Author(s):  
Piush Khanal ◽  
Christian Maltecca ◽  
Clint Schwab ◽  
Justin Fix ◽  
Francesco Tiezzi

Abstract BackgroundSwine gut microbiome constitutes a portion of the whole genome and has potential to affect different phenotypes. More recently, research is more directed towards association of gut microbiome and different traits in swine. However, the contribution of microbial composition to the phenotypic variation of meat quality and carcass composition traits in pigs has not been explored yet. The objectives of this study are to estimate the microbiabilities for different meat quality and carcass composition traits; to investigate the impact of intestinal microbiome on heritability estimates; to estimate the correlation between microbial diversity and meat quality and carcass composition traits; and to estimate the microbial correlation between the meat quality and carcass composition traits in a commercial swine population.ResultsThe contribution of the microbiome to carcass composition and meat quality traits was prominent although it varied over time, increasing from weaning to off test for most traits. Microbiability estimates of carcass composition traits were greater than that of meat quality traits. Among all of the traits analyzed, belly weight had higher microbiability estimate (0.29 ± 0.04). Adding microbiome information did not affect the estimates of genomic heritability of meat quality traits but affected the estimates of carcass composition traits. Fat depth had greater decrease (10%) in genomic heritability. High microbial correlations were found among several traits. This suggested that genomic correlation was partially contributed by genetic similarity of microbiome composition.ConclusionsResults indicate that better understanding of microbial composition could aid the improvement of complex traits, particularly the carcass composition traits in swine by inclusion of microbiome information in the genetic evaluation process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashish Kumar Srivastava ◽  
Vishwajeet Rohil ◽  
Brij Bhushan ◽  
Malleswara Rao Eslavath ◽  
Harshita Gupta ◽  
...  

AbstractShip voyage to Antarctica is a stressful journey for expedition members. The response of human gut microbiota to ship voyage and a feasible approach to maintain gut health, is still unexplored. The present findings describe a 24-day long longitudinal study involving 19 members from 38th Indian Antarctic Expedition, to investigate the impact of ship voyage and effect of probiotic intervention on gut microbiota. Fecal samples collected on day 0 as baseline and at the end of ship voyage (day 24), were analyzed using whole genome shotgun sequencing. Probiotic intervention reduced the sea sickness by 10% compared to 44% in placebo group. The gut microbiome in placebo group members on day 0 and day 24, indicated significant alteration compared to a marginal change in the microbial composition in probiotic group. Functional analysis revealed significant alterations in carbohydrate and amino acid metabolism. Carbohydrate-active enzymes analysis represented functional genes involved in glycoside hydrolases, glycosyltransferases and carbohydrate binding modules, for maintaining gut microbiome homeostasis. Suggesting thereby the possible mechanism of probiotic in stabilizing and restoring gut microflora during stressful ship journey. The present study is first of its kind, providing a feasible approach for protecting gut health during Antarctic expedition involving ship voyage.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 547 ◽  
Author(s):  
Olesya Volokh ◽  
Natalia Klimenko ◽  
Yulia Berezhnaya ◽  
Alexander Tyakht ◽  
Polina Nesterova ◽  
...  

Accumulated data suggests that the gut microbiome can rapidly respond to changes in diet. Consumption of fermented dairy products (FDP) fortified with probiotic microbes may be associated with positive impact on human health. However, the extent and details of the possible impact of FDP consumption on gut community structure tends to vary across individuals. We used microbiome analysis to characterize changes in gut microbiota composition after 30 days of oral intake of a yoghurt fortified with Bifidobacterium animalis subsp. lactis BB-12. 16S rRNA gene sequencing was used to assess the gut microbial composition before and after FDP consumption in healthy adults (n = 150). Paired comparison of gut microbial content demonstrated an increase in presence of potentially beneficial bacteria, particularly, Bifidobacterium genus, as well as Adlercreutzia equolifaciens and Slackia isoflavoniconvertens. At a functional level, an increased capacity to metabolize lactose and synthesize amino acids was observed accompanied by a lowered potential for synthesis of lipopolysaccharides. Cluster analysis revealed that study volunteers segregated into two groups with post-intervention microbiota response that was dependent on the baseline microbial community structure.


2019 ◽  
Vol 7 (4) ◽  
pp. 246-249 ◽  
Author(s):  
Hu Hao ◽  
Lixin Zhu ◽  
Howard S Faden

Abstract The composition and the diversity of the gut microbiome play a major role in the health and well-being of humans beginning at birth. The impact of the diet on the structure and the function of the gut microbiome is evident by the changes in the gut microbiome concurrent with the transition from human milk to solid food. Complex oligosaccharides contained in milk are essential nutrients for commensal microbes in the infant gut. The most important commensal bacterium in the infant gut, bifidobacterium, requires α1, 2 fucosylated oligosaccharides for growth. Because not all humans are able to secrete α1, 2 fucosylated oligosaccharides into milk, the gut microbiome of infants and bifidobacteria, in particular, vary considerably between ‘secretors’ and ‘non-secretors’. A paucity of α1, 2 fucosylated oligosaccharides and bifidobacteria in the gut of infants may be associated with poor health.


2021 ◽  
Vol 18 ◽  
Author(s):  
Miao Sun ◽  
Wenchenyang Bao ◽  
Chengyu Huang ◽  
Ziyue Xia ◽  
Changliang Zhang ◽  
...  

Background: The brain-gut-microbiome axis has emerged as an important pathway through which perturbations in the gut and/or microbial microenvironment can impact neurological function. Such alterations have been implicated in a variety of neuropsychiatric disorders, includ- ing depression, anxiety, and Alzheimer’s Disease (AD) and the use of probiotics as therapy for th- ese diseases remains promising. However, the mechanisms underlying the gut microenvironment’s influence on disease pathogenesis and therapy remain unclear. Objective: The objective of this study is to investigate the effect of a novel probiotic formula, BIOCG, on cognitive function and pathobiological mechanisms, including amyloid processing and dendritic spine dynamics, in a mouse model of AD. Methods: BIOCG was administered for 3 months to 3xTg or 3xTg; Thy1-YFP AD mice and func- tional outcomes were assessed via behavioral testing and electrophysiology. Mechanisms relevant to AD pathogenesis including dendritic spine morphology and turnover, Amyloid Precursor Pro- tein (APP) processing and microglial phenotype were also evaluated. Finally, we sequenced fecal samples following probiotic treatment to assess the impact on gut microbial composition and corre- late the changes with the above described measures. Results: Mice treated with BIOCG demonstrated preserved cognitive abilities and stronger Long- Term Potentiation (LTP), spontaneous Excitatory Postsynaptic Currents (sEPSC), and glutamate-in- duced LTPs, indicative of functional and electrophysiological effects. Moreover, we observed atten- uated AD pathogenesis, including reduced Amyloid Beta (Aβ) burden, as well as more mature den- dritic spines in the BIOCG-treated. Our finding of changes in microglial number and phenotype in the treatment group suggests that this formulation may mediate its effects via attenuation of neu- roinflammation. Sequencing data confirmed that the gut microbiome in treated mice was more varied and harbored a greater proportion of “beneficial” bacteria. Conclusion: Overall, our results indicate that treatment with BIOCG enhances microbial diversity and, through gut-brain axis interactions, attenuates neuroinflammation to produce histologic and functional improvement in AD pathogenesis.


Elem Sci Anth ◽  
2019 ◽  
Vol 7 ◽  
Author(s):  
Sahra J. Webb ◽  
Tia Rabsatt ◽  
Natalia Erazo ◽  
Jeff S. Bowman

Marine eelgrasses are influential to their surrounding environments through their many ecosystem services, ranging from the provisioning of food and shelter for marine life to serving as a natural defense against pollution and pathogenic bacteria. In the marine waters of San Diego, CA, USA, eelgrass beds comprised of Zostera spp. are an integral part of the coastal ecosystem. To evaluate the impact of eelgrass on bacterial and archaeal community structure we collected water samples in San Diego Bay and sequenced the 16S rRNA gene from paired eelgrass-present and eelgrass-absent sites. To test the hypothesis that microbial community structure is influenced by the presence of eelgrass we applied mixed effects models to these data and to bacterial abundance data derived by flow cytometry. This approach allowed us to identify specific microbial taxa that were differentially present at eelgrass-present and eelgrass-absent sites. Principal coordinate analysis organized the samples by location (inner vs. outer bay) along the first axis, where the first two axes accounted for a 90.8% of the variance in microbial community structure among the samples. Differentially present bacterial taxa included members of the order Rickettsiales, family Flavobacteriaceae, genus Tenacibaculum and members of the order Pseudomonadales. These findings constitute a unique look into the microbial composition of San Diego Bay and examine how eelgrasses contribute to marine ecosystem health, e.g., by supporting specific microbial communities and by filtering and trapping potentially harmful bacteria to the benefit of marine organisms.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7683 ◽  
Author(s):  
Nourhan Sahly ◽  
Ahmed Moustafa ◽  
Mohamed Zaghloul ◽  
Tamer Z. Salem

The incidence of pediatric cancer is lower than that of adult cancer worldwide. However, the former has detrimental side effects on the health of individuals, even after the cancer is cured, due to the impact of treatment on development. Recently, correlations have been made between the gut microbiome and cancer in several studies but only on adult participants. There is always a complication of dealing with pediatric cancer treatment protocols because they usually include a combination of chemotherapy, radiotherapy, and intensive prophylactic antibiotics. In the current study, a pilot study was conducted to analyze ten fecal samples from three pediatric cancer patients, suffering from rhabdomyosarcoma near their pelvic region, and two healthy individuals. A correlation between microbial composition and response to treatment was reported, in which the responders had generally a lower microbial diversity compared to non-responders. In addition, nucleotide changes and deletions in the tested 16S rRNA sequences post radiotherapy were detected. Despite the small sample size used in the experiments due to the uncommon rhabdomyosarcoma in children, the results can help in understanding the influence of radiotherapy on the gut microbiome in pediatric cancer patients. More work with larger sample size and different cancer types need to be conducted to understand the influence of radiotherapy on gut microbiome to mitigate the deleterious impact of radiation on treated children.


Sign in / Sign up

Export Citation Format

Share Document