scholarly journals Eradication of Myrosinase-Tethered Cancer Cells by Allyl Isothiocyanate Derived from Enzymatic Hydrolysis of Sinigrin

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 144
Author(s):  
Ammar Tarar ◽  
Esmael M. Alyami ◽  
Ching-An Peng

Sinigrin is present in significant amounts in cruciferous vegetables. Epidemiological studies suggest that the consumption of such vegetables decreases the risk of cancer, and the effect is attributed mainly to allyl isothiocyanate (AITC), a hydrolysis product of sinigrin catalyzed by myrosinase. Anticancer activity of AITC has been previously investigated for several cancer models, but less attention was paid to delivering AITC on the target site. In this study, the gene sequences of core streptavidin (coreSA) and myrosinase (MYR) were cloned in a pET-30a(+) plasmid and transformed into BL21(DE3) E. coli competent cells. The MYR-coreSA chimeric protein was expressed and purified using immobilized metal affinity chromatography and further characterized by gel electrophoresis, Western blot, and enzyme activity assay. The purified MYR-coreSA chimeric protein was tethered on the outer membrane of biotinylated adenocarcinoma A549 cells and then treated with various concentrations of sinigrin. Our results showed that 20 µM of sinigrin inhibited the growth of A549 cells tethered with myrosinase by ~60% in 48 h. Furthermore, the levels of treated cells undertaken apoptosis were determined by Caspase-3/7 activation and Annexin-V. In summary, sinigrin harnessed like a prodrug catalyzed by myrosinase to the production of AITC, which induced cell apoptosis and arrested the growth of lung cancer cells.

2021 ◽  
Vol 22 (24) ◽  
pp. 13233
Author(s):  
Kota Sato ◽  
Soichiro Iwasaki ◽  
Hironori Yoshino

Senolytic agents eliminate senescent cells and are expected to reduce senescent cell-mediated adverse effects in cancer therapy. However, the effects of senolytic agents on the survival of irradiated cancer cells remain unknown. Here, the effects of the senolytic agent ABT-263 on the survival of irradiated A549 and Ca9-22 cancer cells were investigated. ABT-263 was added to the culture medium after irradiation. SA-β-gal activity and cell size, which are hallmarks of cell senescence, were evaluated using a flow cytometer. The colony-forming assay and annexin V staining were performed to test cell survival. We first confirmed that radiation increased the proportion of cells with high SA-β-gal activity and that ABT-263 decreased it. Of note, ABT-263 decreased the survival of irradiated cancer cells and increased the proportion of radiation-induced annexin V+ cells. Furthermore, the caspase inhibitor suppressed the ABT-263-induced decrease in the survival of irradiated cells. Intriguingly, ABT-263 decreased the proportion of SA-β-gal low-activity/large cells in the irradiated A549 cells, which was recovered by the caspase inhibitor. Together, these findings suggest that populations maintaining the ability to proliferate existed among the irradiated cancer cells showing senescence-related features and that ABT-263 eliminated the population, which led to decreased survival of irradiated cancer cells.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 638
Author(s):  
Nabil A. Alhakamy ◽  
Giuseppe Caruso ◽  
Mohammed W. Al-Rabia ◽  
Shaimaa M. Badr-Eldin ◽  
Hibah M. Aldawsari ◽  
...  

Piceatannol (PIC) is a naturally occurring polyphenolic stilbene, and it has pleiotropic pharmacological properties. Moreover, PIC has cytotoxic actions among various cancer cells. In this work, preparations of PIC-loaded bilosome–zein (PIC-BZ) were designed, formulated, and characterized, and the optimized PIC-BZ cytotoxic activities, measured as half maximal inhibitory concentration (IC50), against lung cancer cell line was investigated. Box–Behnken design was utilized in order to examine the effect of preparation factors on drug entrapment and particle size. PIC-BZ showed a spherical shape after optimization, and its particle size was determined as 157.45 ± 1.62 nm. Moreover, the efficiency of drug entrapment was found as 93.14 ± 2.15%. The cytotoxic activity evaluation revealed that the adjusted formulation, which is PIC-BZ formula, showed a substantially smaller IC50 versus A549 cells. Cell cycle analysis showed accumulation of cells in the G2-M phase. Moreover, it showed in the sub-G1 phase, a rise of cell fraction suggestion apoptotic improving activity. Increased early and late phases of apoptosis were demonstrated by staining of cells with annexin V. Furthermore, the cellular caspase-3 protein expression was significantly raised by PIC-BZ. In addition, the wound healing experiment confirmed the results. To conclude, compared to pure PIC, PIC-BZ demonstrated a higher cell death-inducing activity against A549 cells.


2018 ◽  
Vol 25 (28) ◽  
pp. 3319-3332 ◽  
Author(s):  
Chuanmin Zhang ◽  
Shubiao Zhang ◽  
Defu Zhi ◽  
Jingnan Cui

There are several mechanisms by which cancer cells develop resistance to treatments, including increasing anti-apoptosis, increasing drug efflux, inducing angiogenesis, enhancing DNA repair and altering cell cycle checkpoints. The drugs are hard to reach curative effects due to these resistance mechanisms. It has been suggested that liposomes based co-delivery systems, which can deliver drugs and genes to the same tumor cells and exhibit synergistic anti-cancer effects, could be used to overcome the resistance of cancer cells. As the co-delivery systems could simultaneously block two or more pathways, this might promote the death of cancer cells by sensitizing cells to death stimuli. This article provides a brief review on the liposomes based co-delivery systems to overcome cancer resistance by the synergistic effects of drugs and genes. Particularly, the synergistic effects of combinatorial anticancer drugs and genes in various cancer models employing multifunctional liposomes based co-delivery systems have been discussed. This review also gives new insights into the challenges of liposomes based co-delivery systems in the field of cancer therapy, by which we hope to provide some suggestions on the development of liposomes based co-delivery systems.


2020 ◽  
Vol 21 (11) ◽  
pp. 902-909
Author(s):  
Jingxin Zhang ◽  
Weiyue Shi ◽  
Gangqiang Xue ◽  
Qiang Ma ◽  
Haixin Cui ◽  
...  

Background: Among all cancers, lung cancer has high mortality among patients in most of the countries in the world. Targeted delivery of anticancer drugs can significantly reduce the side effects and dramatically improve the effects of the treatment. Folate, a suitable ligand, can be modified to the surface of tumor-selective drug delivery systems because it can selectively bind to the folate receptor, which is highly expressed on the surface of lung tumor cells. Objective: This study aimed to construct a kind of folate-targeted topotecan liposomes for investigating their efficacy and mechanism of action in the treatment of lung cancer in preclinical models. Methods: We conjugated topotecan liposomes with folate, and the liposomes were characterized by particle size, entrapment efficiency, cytotoxicity to A549 cells and in vitro release profile. Technical evaluations were performed on lung cancer A549 cells and xenografted A549 cancer cells in female nude mice, and the pharmacokinetics of the drug were evaluated in female SD rats. Results: The folate-targeted topotecan liposomes were proven to show effectiveness in targeting lung tumors. The anti-tumor effects of these liposomes were demonstrated by the decreased tumor volume and improved therapeutic efficacy. The folate-targeted topotecan liposomes also lengthened the topotecan blood circulation time. Conclusion: The folate-targeted topotecan liposomes are effective drug delivery systems and can be easily modified with folate, enabling the targeted liposomes to deliver topotecan to lung cancer cells and kill them, which could be used as potential carriers for lung chemotherapy.


2018 ◽  
Vol 18 (7) ◽  
pp. 1054-1063 ◽  
Author(s):  
Ning Ding ◽  
Hong Zhang ◽  
Shan Su ◽  
Yumei Ding ◽  
Xiaohui Yu ◽  
...  

Background: Endometrial cancer is a common cause of death in gynecological malignancies. Cisplatin is a clinically chemotherapeutic agent. However, drug-resistance is the primary cause of treatment failure. Objective: Emodin is commonly used clinically to increase the sensitivity of chemotherapeutic agents, yet whether Emodin promotes the role of Cisplatin in the treatment of endometrial cancer has not been studied. Method: CCK-8 kit was utilized to determine the growth of two endometrial cancer cell lines, Ishikawa and HEC-IB. The apoptosis level of Ishikawa and HEC-IB cells was detected by Annexin V / propidium iodide double-staining assay. ROS level was detected by DCFH-DA and NADPH oxidase expression. Expressions of drug-resistant genes were examined by real-time PCR and Western blotting. Results: Emodin combined with Cisplatin reduced cell growth and increased the apoptosis of endometrial cancer cells. Co-treatment of Emodin and Cisplatin increased chemosensitivity by inhibiting the expression of drugresistant genes through reducing the ROS levels in endometrial cancer cells. In an endometrial cancer xenograft murine model, the tumor size was reduced and animal survival time was increased by co-treatment of Emodin and Cisplatin. Conclusion: This study demonstrates that Emodin enhances the chemosensitivity of Cisplatin on endometrial cancer by inhibiting ROS-mediated expression of drug-resistance genes.


2019 ◽  
Vol 19 (15) ◽  
pp. 1835-1845
Author(s):  
Ali Hassanzadeh ◽  
Adel Naimi ◽  
Majid F. Hagh ◽  
Raedeh Saraei ◽  
Faroogh Marofi ◽  
...  

Introduction: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) is a member of the tumor necrosis factor (TNF) superfamily, which stimulates apoptosis in a wide range of cancer cells via binding to death receptors 4 and 5 (DR4/5). Nevertheless, TRAIL has noticeable anti-cancer abilities; some cancer cells acquire resistance to TRAIL, and consequently its potential for inducing apoptosis in target cells is strongly diminished. Acute lymphoblastic leukemia MOLT-4 cell line is one of the most resistant cells to TRAIL that developed resistance to TRAIL via different pathways. We used TRAIL plus kaempferol to eliminate resistance of the MOLT-4 cells to TRAIL. Material and Methods: First, IC50 for kaempferol (95 µM) was determined by using the MTT assay. Second, the viability of the MOLT-4 cells was assayed by FACS after Annexin V/PI staining, following treatment with TRAIL (50 and 100 nM) and kaempferol (95 µM) alone and together. Finally, the expression levels of the candidate genes involved in resistance to TRAIL were assayed by real-time PCR technique. Results: Kaempferol plus TRAIL induced apoptosis robustly in MOLT-4 cells at 12, 24 and 48 hours after treatment. Additionally, we found that kaempferol could inhibit expression of the c-FLIP, X-IAP, cIAP1/2, FGF-8 and VEGF-beta, and conversely augment expression of the DR4/5 in MOLT-4 cells. Conclusion: We suggest that co-treatment of MOLT-4 cells with TRAIL plus kaempferol is a practical and attractive approach to eliminate cancers’ resistance to TRAIL via inhibition of the intracellular anti-apoptotic proteins, upregulation of DR4/5 and also by suppression of the VEGF-beta (VEGFB) and FGF-8 expressions.


2019 ◽  
Vol 19 (6) ◽  
pp. 826-837 ◽  
Author(s):  
Pratibha Pandey ◽  
Preeti Bajpai ◽  
Mohammad H. Siddiqui ◽  
Uzma Sayyed ◽  
Rohit Tiwari ◽  
...  

Background:Plant sterols have proven a potent anti-proliferative and apoptosis inducing agent against several carcinomas including breast and prostate cancers. Jab1 has been reported to be involved in the progression of numerous carcinomas. However, antiproliferative effects of sterols against Jab1 in gall bladder cancer have not been explored yet.Objective:In the current study, we elucidated the mechanism of action of stigmasterol regarding apoptosis induction mediated via downregulation of Jab1 protein in human gall bladder cancer cells.Methods:In our study, we performed MTT and Trypan blue assay to assess the effect of stigmasterol on cell proliferation. In addition, RT-PCR and western blotting were performed to identify the effect of stigmasterol on Jab1 and p27 expression in human gall bladder cancer cells. We further performed cell cycle, Caspase-3, Hoechst and FITC-Annexin V analysis, to confirm the apoptosis induction in stigmasterol treated human gall bladder cancer cells.Results:Our results clearly indicated that stigmasterol has up-regulated the p27 expression and down-regulated Jab1 gene. These modulations of genes might occur via mitochondrial apoptosis signaling pathway. Caspase-3 gets activated with the apoptotic induction. Increase in apoptotic cells and DNA were confirmed through annexin V staining, Hoechst staining, and cell cycle analysis.Conclusion:Thus, these results strongly suggest that stigmasterol has the potential to be considered as an anticancerous therapeutic agent against Jab1 in gall bladder cancer.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 638
Author(s):  
Kittipong Sanookpan ◽  
Nongyao Nonpanya ◽  
Boonchoo Sritularak ◽  
Pithi Chanvorachote

Cancer metastasis is the major cause of about 90% of cancer deaths. As epithelial-to-mesenchymal transition (EMT) is known for potentiating metastasis, this study aimed to elucidate the effect of ovalitenone on the suppression of EMT and metastasis-related behaviors, including cell movement and growth under detached conditions, and cancer stem cells (CSCs), of lung cancer cells. Methods: Cell viability and cell proliferation were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazo-liumbromide (MTT) and colony formation assays. Cell migration and invasion were analyzed using a wound-healing assay and Boyden chamber assay, respectively. Anchorage-independent cell growth was determined. Cell protrusions (filopodia) were detected by phalloidin-rhodamine staining. Cancer stem cell phenotypes were assessed by spheroid formation. The proteins involved in cell migration and EMT were evaluated by Western blot analysis and immunofluorescence staining. Results: Ovalitenone was used at concentrations of 0–200 μM. While it caused no cytotoxic effects on lung cancer H460 and A549 cells, ovalitenone significantly suppressed anchorage-independent growth, CSC-like phenotypes, colony formation, and the ability of the cancer to migrate and invade cells. The anti-migration activity was confirmed by the reduction of filopodia in the cells treated with ovalitenone. Interestingly, we found that ovalitenone could significantly decrease the levels of N-cadherin, snail, and slug, while it increased E-cadherin, indicating EMT suppression. Additionally, the regulatory signaling of focal adhesion kinase (FAK), ATP-dependent tyrosine kinase (AKT), the mammalian target of rapamycin (mTOR), and cell division cycle 42 (Cdc42) was suppressed by ovalitenone. Conclusions: The results suggest that ovalitenone suppresses EMT via suppression of the AKT/mTOR signaling pathway. In addition, ovalitenone exhibited potential for the suppression of CSC phenotypes. These data reveal the anti-metastasis potential of the compound and support the development of ovalitenone treatment for lung cancer therapy.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C.C Van 't Klooster ◽  
P.M Ridker ◽  
N.R Cook ◽  
J.G.J.V Aerts ◽  
J Westerink ◽  
...  

Abstract Background As treatment for cardiovascular disease (CVD) has improved substantially over the last decades, more patients survive acute CVD manifestations and are at risk for developing cancer as well as recurrent CVD. Due to similar risk factors, including smoking and obesity, patients with established CVD are at higher risk for cancer. Objectives The aim of this study was to develop and externally validate prediction models for the estimation of 10-year and lifetime risk for total, colorectal, and lung cancer in patients with established CVD. Methods Data from patients with established CVD from the UCC-SMART prospective cohort study (N=7,280) were used for model development, and data from the CANTOS trial (N=9,322) were used for model validation. Predictors were selected based on previously published cancer risk prediction models or cancer risk factors, easy clinical availability, and availability in the derivation dataset (UCC-SMART cohort). A Fine and Gray competing risk-adjusted lifetime model was developed for total, colorectal, and lung cancer. Results Selected predictors were age, sex, smoking status, weight, height, alcohol use, antiplatelet use, diabetes mellitus, and C-reactive protein. External calibration for 4-year risks of the total cancer, colorectal cancer, and lung cancer models was good (Figure 1), and C-statistics were 0.63–0.74 in the CANTOS trial population. Median predicted lifetime risks in CANTOS were 26% (range 1%-52%) for total cancer, 4% (range 0%-13%) for colorectal cancer, and 5% (range 0%-37%) for lung cancer. Conclusions Lifetime and 10-year risk of cancer can be estimated with easy to measure variables in patients with established CVD, showing a wide distribution of predicted lifetime risks for total cancer and lung cancer. Using these lifetime models in clinical practice could increase understanding of cancer risk and aid in emphasizing healthy lifestyle changes. Figure 1. Calibration plots of cancer models Funding Acknowledgement Type of funding source: Public hospital(s). Main funding source(s): University Medical Center; Additional funding: CANTOS trial was funded by Novartis Pharmaceuticals.


2021 ◽  
pp. 096032712110214
Author(s):  
JY Lee ◽  
HM Lim ◽  
CM Lee ◽  
S-H Park ◽  
MJ Nam

Indole-3-carbinol (I3C) is a phytochemical that exhibits growth-inhibitory activity against various cancer cells. However, there are limited studies on the effects of I3C on colon cancer cells. In this study, the growth-inhibitory activity of I3C against the human colorectal carcinoma cell line (LoVo) was examined. The results of the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide, colony formation, and cell counting assays revealed that I3C suppressed the proliferation of LoVo cells. Microscopy and wound-healing analyses revealed that I3C affected the morphology and inhibited the migration of LoVo cells, respectively. I3C induced apoptosis and DNA fragmentation as evidenced by the results of fluorescein isothiocyanate-conjugated annexin V staining and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling assay, respectively. Additionally, I3C arrested the cell cycle at the G0/G1 phase and enhanced the reactive oxygen species levels. Western blotting analysis revealed that treatment with I3C resulted in the activation of apoptotic proteins, such as poly(ADP-ribose) polymerase, caspase-3, caspase-7, caspase-9, Bax, Bim, and p53 in LoVo cells. These results indicate that I3C induces apoptosis in LoVo cells by upregulating p53, leading to the activation of Bax and caspases. Taken together, I3C exerts cytotoxic effects on LoVo cells by activating apoptosis.


Sign in / Sign up

Export Citation Format

Share Document