scholarly journals Validation of Reference Genes for Quantitative PCR in Johnsongrass (Sorghum halepense L.) under Glyphosate Stress

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1555
Author(s):  
María Noelia Ulrich ◽  
Esteban Muñiz-Padilla ◽  
Alejandra Corach ◽  
Esteban Hopp ◽  
Daniela Tosto

Weeds are one of the main causes of the decrease in crop yields, with Johnsongrass (Sorghum halepense L.) being one of the most significant. Weeds can be controlled by herbicides, but some have developed resistance. Quantitative PCR is the technique of choice for studying gene expression related to herbicide resistance because of its high sensitivity and specificity, although its quantitative accuracy is highly dependent on the stability of the reference genes. Thus, in this study we evaluated the stability of different reference genes of glyphosate-resistant S. halepense. Nine genes frequently used as reference genes were selected: MDH, ADP, PP2A, EIF4α, ACT, ARI8, DnaJ, Hsp70, and ALS1, and their expression analyzed in susceptible and resistant biotypes at 0, 24 and 72 h post-application of glyphosate. The stability was analyzed with the geNorm, NormFinder, and BestKeeper software programs and using the ΔCt method. RefFinder was used to generate a comprehensive stability ranking. The results showed that PP2A and ARI8 were the most stable genes under the test conditions. EPSPS expression was also verified against the best two and the worst two reference genes. This study provides useful information for gene expression analysis under glyphosate stress and will facilitate resistance mechanism studies in this weed species.

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1837 ◽  
Author(s):  
Qiang Liu ◽  
Chi Wei ◽  
Ming-Fang Zhang ◽  
Gui-Xia Jia

Normalization to reference genes is the most common method to avoid bias in real-time quantitative PCR (qPCR), which has been widely used for quantification of gene expression. Despite several studies on gene expression,Lilium, and particularlyL. regale, has not been fully investigated regarding the evaluation of reference genes suitable for normalization. In this study, nine putative reference genes, namely18S rRNA,ACT,BHLH,CLA,CYP,EF1,GAPDH,SANDandTIP41, were analyzed for accurate quantitative PCR normalization at different developmental stages and under different stress conditions, including biotic (Botrytis elliptica), drought, salinity, cold and heat stress. All these genes showed a wide variation in their Cq (quantification Cycle) values, and their stabilities were calculated by geNorm, NormFinder and BestKeeper. In a combination of the results from the three algorithms,BHLHwas superior to the other candidates when all the experimental treatments were analyzed together;CLAandEF1were also recommended by two of the three algorithms. As for specific conditions,EF1under various developmental stages,SANDunder biotic stress,CYP/GAPDHunder drought stress, andTIP41under salinity stress were generally considered suitable. All the algorithms agreed on the stability ofSANDandGAPDHunder cold stress, while onlyCYPwas selected under heat stress by all of them. Additionally, the selection of optimal reference genes under biotic stress was further verified by analyzing the expression level ofLrLOXin leaves inoculated withB. elliptica. Our study would be beneficial for future studies on gene expression and molecular breeding ofLilium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuping Li ◽  
Xiaoju Liang ◽  
Xuguo Zhou ◽  
Yu An ◽  
Ming Li ◽  
...  

AbstractGlycyrrhiza, a genus of perennial medicinal herbs, has been traditionally used to treat human diseases, including respiratory disorders. Functional analysis of genes involved in the synthesis, accumulation, and degradation of bioactive compounds in these medicinal plants requires accurate measurement of their expression profiles. Reverse transcription quantitative real-time PCR (RT-qPCR) is a primary tool, which requires stably expressed reference genes to serve as the internal references to normalize the target gene expression. In this study, the stability of 14 candidate reference genes from the two congeneric species G. uralensis and G. inflata, including ACT, CAC, CYP, DNAJ, DREB, EF1, RAN, TIF1, TUB, UBC2, ABCC2, COPS3, CS, R3HDM2, were evaluated across different tissues and throughout various developmental stages. More importantly, we investigated the impact of interactions between tissue and developmental stage on the performance of candidate reference genes. Four algorithms, including geNorm, NormFinder, BestKeeper, and Delta Ct, were used to analyze the expression stability and RefFinder, a comprehensive software, provided the final recommendation. Based on previous research and our preliminary data, we hypothesized that internal references for spatio-temporal gene expression are different from the reference genes suited for individual factors. In G. uralensis, the top three most stable reference genes across different tissues were R3HDM2, CAC and TUB, while CAC, CYP and ABCC2 were most suited for different developmental stages. CAC is the only candidate recommended for both biotic factors, which is reflected in the stability ranking for the spatio (tissue)-temporal (developmental stage) interactions (CAC, R3HDM2 and DNAJ). Similarly, in G. inflata, COPS3, R3HDM2 and DREB were selected for tissues, while RAN, COPS3 and CS were recommended for developmental stages. For the tissue-developmental stage interactions, COPS3, DREB and ABCC2 were the most suited reference genes. In both species, only one of the top three candidates was shared between the individual factors and their interactions, specifically, CAC in G. uralensis and COPS3 in G. inflata, which supports our overarching hypothesis. In summary, spatio-temporal selection of reference genes not only lays the foundation for functional genomics research in Glycyrrhiza, but also facilitates these traditional medicinal herbs to reach/maximize their pharmaceutical potential.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fei Xiong ◽  
Xiangyun Cheng ◽  
Chao Zhang ◽  
Roland Manfred Klar ◽  
Tao He

Abstract Background Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) remains one of the best-established techniques to assess gene expression patterns. However, appropriate reference gene(s) selection remains a critical and challenging subject in which inappropriate reference gene selction can distort results leading to false interpretations. To date, mixed opinions still exist in how to choose the most optimal reference gene sets in accodrance to the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guideline. Therefore, the purpose of this study was to investigate which schemes were the most feasible for the identification of reference genes in a bone and cartilage bioengineering experimental setting. In this study, rat bone mesenchymal stem cells (rBMSCs), skeletal muscle tissue and adipose tissue were utilized, undergoing either chondrogenic or osteogenic induction, to investigate the optimal reference gene set identification scheme that would subsequently ensure stable and accurate interpretation of gene expression in bone and cartilage bioengineering. Results The stability and pairwise variance of eight candidate reference genes were analyzed using geNorm. The V0.15- vs. Vmin-based normalization scheme in rBMSCs had no significant effect on the eventual normalization of target genes. In terms of the muscle tissue, the results of the correlation of NF values between the V0.15 and Vmin schemes and the variance of target genes expression levels generated by these two schemes showed that different schemes do indeed have a significant effect on the eventual normalization of target genes. Three selection schemes were adopted in terms of the adipose tissue, including the three optimal reference genes (Opt3), V0.20 and Vmin schemes, and the analysis of NF values with eventual normalization of target genes showed that the different selection schemes also have a significant effect on the eventual normalization of target genes. Conclusions Based on these results, the proposed cut-off value of Vn/n + 1 under 0.15, according to the geNorm algorithm, should be considered with caution. For cell only experiments, at least rBMSCs, a Vn/n + 1 under 0.15 is sufficient in RT-qPCR studies. However, when using certain tissue types such as skeletal muscle and adipose tissue the minimum Vn/n + 1 should be used instead as this provides a far superior mode of generating accurate gene expression results. We thus recommended that when the stability and variation of a candidate reference genes in a specific study is unclear the minimum Vn/n + 1 should always be used as this ensures the best and most accurate gene expression value is achieved during RT-qPCR assays.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 960
Author(s):  
Meagan Archer ◽  
Jianping Xu

Aspergillus is a genus of filamentous fungi with vast geographic and ecological distributions. Species within this genus are clinically, agriculturally and biotechnologically relevant, leading to increasing interest in elucidating gene expression dynamics of key metabolic and physiological processes. Reverse-transcription quantitative Polymerase Chain Reaction (RT-qPCR) is a sensitive and specific method of quantifying gene expression. A crucial step for comparing RT-qPCR results between strains and experimental conditions is normalisation to experimentally validated reference gene(s). In this review, we provide a critical analysis of current reference gene selection and validation practices for RT-qPCR gene expression analyses of Aspergillus. Of 90 primary research articles obtained through our PubMed query, 17 experimentally validated the reference gene(s) used. Twenty reference genes were used across the 90 studies, with beta-tubulin being the most used reference gene, followed by actin, 18S rRNA and glyceraldehyde 3-phosphate dehydrogenase. Sixteen of the 90 studies used multiple reference genes for normalisation. Failing to experimentally validate the stability of reference genes can lead to conflicting results, as was the case for four studies. Overall, our review highlights the need to experimentally validate reference genes in RT-qPCR studies of Aspergillus.


2015 ◽  
Vol 47 (6) ◽  
pp. 232-239 ◽  
Author(s):  
Gustav Holmgren ◽  
Nidal Ghosheh ◽  
Xianmin Zeng ◽  
Yalda Bogestål ◽  
Peter Sartipy ◽  
...  

Reference genes, often referred to as housekeeping genes (HKGs), are frequently used to normalize gene expression data based on the assumption that they are expressed at a constant level in the cells. However, several studies have shown that there may be a large variability in the gene expression levels of HKGs in various cell types. In a previous study, employing human embryonic stem cells (hESCs) subjected to spontaneous differentiation, we observed that the expression of commonly used HKG varied to a degree that rendered them inappropriate to use as reference genes under those experimental settings. Here we present a substantially extended study of the HKG signature in human pluripotent stem cells (hPSC), including nine global gene expression datasets from both hESC and human induced pluripotent stem cells, obtained during directed differentiation toward endoderm-, mesoderm-, and ectoderm derivatives. Sets of stably expressed genes were compiled, and a handful of genes (e.g., EID2, ZNF324B, CAPN10, and RABEP2) were identified as generally applicable reference genes in hPSCs across all cell lines and experimental conditions. The stability in gene expression profiles was confirmed by reverse transcription quantitative PCR analysis. Taken together, the current results suggest that differentiating hPSCs have a distinct HKG signature, which in some aspects is different from somatic cell types, and underscore the necessity to validate the stability of reference genes under the actual experimental setup used. In addition, the novel putative HKGs identified in this study can preferentially be used for normalization of gene expression data obtained from differentiating hPSCs.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dorota M. Krzyżanowska ◽  
Anna Supernat ◽  
Tomasz Maciąg ◽  
Marta Matuszewska ◽  
Sylwia Jafra

Abstract Reverse transcription quantitative PCR (RT-qPCR), a method of choice for quantification of gene expression changes, requires stably expressed reference genes for normalization of data. So far, no reference genes were established for the Alphaproteobacteria of the genus Ochrobactrum. Here, we determined reference genes for gene expression studies in O. quorumnocens A44. Strain A44 was cultured under 10 different conditions and the stability of expression of 11 candidate genes was evaluated using geNorm, NormFinder and BestKeeper. Most stably expressed genes were found to be rho, gyrB and rpoD. Our results can facilitate the choice of reference genes in the related Ochrobactrum strains. O. quorumnocens A44 is able to inactivate a broad spectrum of N-acyl homoserine lactones (AHLs) – the quorum sensing molecules of many Gram-negative bacteria. This activity is attributed to AiiO hydrolase, yet it remains unclear whether AHLs are the primary substrate of this enzyme. Using the established RT-qPCR setup, we found that the expression of the aiiO gene upon exposure to two AHLs, C6-HLS and 3OC12-HSL, does not change above the 1-fold significance threshold. The implications of this finding are discussed in the light of the role of quorum sensing-interfering enzymes in the host strains.


2019 ◽  
Author(s):  
Alexander P Young ◽  
Carmen F Landry ◽  
Daniel J Jackson ◽  
Russell C Wyeth

Reverse transcription quantitative PCR (RT-qPCR) is a robust technique for the quantification and comparison of gene expression across multiple tissues. To obtain reliable results, one or more reference genes must be employed to normalize expression measurements among treatments or tissue samples. Candidate reference genes must be validated to ensure that they are stable prior to use in qPCR experiments. The pond snail (Lymnaea stagnalis) is a common research organism, particularly in the areas of learning and memory, and is an emerging target for qPCR experimentation. However, no systematic assessment of reference genes has been performed in this animal. Therefore, the aim of our research was to identify stable reference genes to normalize gene expression data from a variety of tissues in L. stagnalis. We evaluated a panel of seven reference genes across six different tissues in L. stagnalis with RT-qPCR. The genes included: elongation factor 1-alpha (EF1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-actin (ACTB), beta-tubulin (TUBB), ubiquitin (UBI), prenylated rab acceptor protein 1 (Rapac1), and a voltage gated potassium channel (VGKC). These genes exhibited a wide range of expression levels among tissues. The stability of each of the genes was consistent when measured by any of the standard stability assessment algorithms: geNorm, NormFinder, BestKeeper and RefFinder. Our data indicate that GAPDH and EF1α are highly stable in the tissues that we examined (central nervous system, tentacles, lips, penis, foot, mantle) as well as in pooled analyses. We do not recommend VGKC for use in RT-qPCR experiments due to its relatively low expression stability. Our results were generally congruent with those obtained from similar studies in other molluscs. Given that a minimum of two reference genes are recommended for data normalization, we suggest GAPDH and EF1α are a strong option for multi-tissue analyses of RT-qPCR data in Lymnaea stagnalis.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2331 ◽  
Author(s):  
Qianqian Zhang ◽  
Wei Liu ◽  
Yingli Cai ◽  
A-Feng Lan ◽  
Yinbing Bian

The reliability of qRT-PCR results depend on the stability of reference genes used for normalization, suggesting the necessity of identification of reference genes before gene expression analysis. Morels are edible mushrooms well-known across the world and highly prized by many culinary kitchens. Here, several candidate genes were selected and designed according to the Morchella importuna transcriptome data. The stability of the candidate genes was evaluated with geNorm and NormFinder under three different experimental conditions, and several genes with excellent stability were selected. The extensive adaptability of the selected genes was tested in ten Morchella species. Results from the three experimental conditions revealed that ACT1 and INTF7 were the most prominent genes in Morchella, CYC3 was the most stable gene in different development stages, INTF4/AEF3 were the top-ranked genes across carbon sources, while INTF3/CYC3 pair showed the robust stability for temperature stress treatment. We suggest using ACT1, AEF3, CYC3, INTF3, INTF4 and INTF7 as reference genes for gene expression analysis studies for any of the 10 Morchella strains tested in this study. The stability and practicality of the gene, vacuolar protein sorting (INTF3), vacuolar ATP synthase (INTF4) and14-3-3 protein (INTF7) involving the basic biological processes were validated for the first time as the candidate reference genes for quantitative PCR. Furthermore, the stability of the reference genes was found to vary under the three different experimental conditions, indicating the importance of identifying specific reference genes for particular conditions.


Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 113 ◽  
Author(s):  
Mengyao Li ◽  
Fangjie Xie ◽  
Qi He ◽  
Jie Li ◽  
Jiali Liu ◽  
...  

Accurate analysis of gene expression requires selection of appropriate reference genes. In this study, we report analysis of eight candidate reference genes (ACTIN, UBQ, EF-1α, UBC, IF-4α, TUB, PP2A, and HIS), which were screened from the genome and transcriptome data in Brassica juncea. Four statistical analysis softwares geNorm, NormFinder, BestKeeper, and RefFinder were used to test the reliability and stability of gene expression of the reference genes. To further validate the stability of reference genes, the expression levels of two CYCD3 genes (BjuB045330 and BjuA003219) were studied. In addition, all genes in the xyloglucan endotransglucosylase/hydrolase (XTH) family were identified in B. juncea and their patterns at different periods of stem enlargement were analyzed. Results indicated that UBC and TUB genes showed stable levels of expression and are recommended for future research. In addition, XTH genes were involved in regulation of stem enlargement expression. These results provide new insights for future research aiming at exploring important functional genes, their expression patterns and regulatory mechanisms for mustard development.


Gene ◽  
2015 ◽  
Vol 554 (2) ◽  
pp. 205-214 ◽  
Author(s):  
Vanessa Galli ◽  
Joyce Moura Borowski ◽  
Ellen Cristina Perin ◽  
Rafael da Silva Messias ◽  
Julia Labonde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document