scholarly journals Electrospun Eco-Friendly Materials Based on Poly(3-hydroxybutyrate) (PHB) and TiO2 with Antifungal Activity Prospective for Esca Treatment

Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1384
Author(s):  
Mariya Spasova ◽  
Olya Stoilova ◽  
Nevena Manolova ◽  
Iliya Rashkov ◽  
Mladen Naydenov

Esca is a type of grapevine trunk disease that severely affects vine yield and longevity. Phaeomoniella chlamydospora (P. chlamydospora) is one of the main fungi associated with esca. The aim of the present study was to obtain eco-friendly materials with potential antifungal activity against P. chlamydospora based on biodegradable and biocompatible poly(3-hydroxybutyrate) (PHB), nanosized TiO2-anatase (nanoTiO2), and chitosan oligomers (COS) by conjunction of electrospinning and electrospraying. One-pot electrospinning of a suspension of nanosized TiO2 nanoparticles in PHB solution resulted in materials in which TiO2 was incorporated within the fibers (design type “in”). Simultaneous electrospinning of PHB solution and electrospraying of the dispersion of nanosized TiO2 in COS solution enabled the preparation of materials consisting of PHB fibers on which TiO2 was deposited on the fibers’ surface (design type “on”). Several methods including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), thermogravimetric analyses (TGA) and water contact angle were utilized to characterize the obtained materials. The incorporation of nanoTiO2 in the PHB fibers, as well as nanoTiO2 deposition onto the surface of the PHB fibers resulted in increased roughness and hydrophobicity of the obtained composite fibrous materials. Moreover, TiO2-on-PHB fibrous material exhibited complete inhibition of fungal growth of P. chlamydospora. Therefore, the obtained eco-friendly fibrous materials based on PHB and nanoTiO2 are promising candidates for protection against esca in agriculture.

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3673
Author(s):  
Nasko Nachev ◽  
Mariya Spasova ◽  
Petya Tsekova ◽  
Nevena Manolova ◽  
Iliya Rashkov ◽  
...  

Nowadays, diseases in plants are a worldwide problem. Fungi represent the largest number of plant pathogens and are responsible for a range of serious plant diseases. Esca is a grapevine disease caused mainly by fungal pathogens Phaeomoniella chlamydospora (P. chlamydospora) and Phaeoacremonium aleophilum (P. aleophilum). The currently proposed methods to fight esca are not curative. In this study, polymer composites based on biodegradable polymer containing chemical fungicides with antifungal activity were successfully prepared by electrospinning. The obtained materials were hydrophobic with good mechanical properties. In vitro studies demonstrated that the fungicide release was higher from PLLA/K5N8Q fibrous mats (ca. 72% for 50 h) compared to the released drug amount from PLLA/5-Cl8Q materials (ca. 52% for 50 h), which is due to the better water-solubility of the salt. The antifungal activity of the fibrous materials against P. chlamydospora and P. aleophilum was studied as well. The incorporation of the fungicide in the biodegradable fibers resulted in the inhibition of fungal growth. The obtained materials are perspective candidates for the protection of vines from the penetration and growth of fungal pathogens.


2018 ◽  
Vol 89 (5) ◽  
pp. 825-833 ◽  
Author(s):  
Igal Katerine ◽  
Arreche Romina A ◽  
Sambeth Jorge E ◽  
Bellotti Natalia ◽  
Vega-Baudrit José R ◽  
...  

In this work, the one-pot sol-gel synthesis of novel siliceous matrixes doped with carbon from spent batteries is reported. The obtained solids with silver nitrate were characterized by their antifungal activity against Aspergillus sp., Cladosporium sp. and Chaetomium globosum, three well-known cellulolytic microorganisms responsible for the deterioration of cotton fabric. In this research it was possible to develop a methodology for the impregnation of cotton fabrics (brin type) and to evaluate the antifungal efficacy. Cotton fabric containing the highest amount of carbon showed the highest antifungal activity against C. globosum and Aspergillus sp. This may be because as the amount of carbon in the silica increases, there is an increase in the surface area that facilitates an effective distribution of the active phase to act, inhibiting the fungal growth.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1617 ◽  
Author(s):  
Spasova ◽  
Manolova ◽  
Rashkov ◽  
Naydenov

Esca is one of the earliest described diseases in grapevines and causes trunk damage and the sudden wilting of the entire plant; it is caused mainly by the species Phaeomoniella chlamydospora (P. chlamydospora) and Phaeoacremonium aleophilum (P. aleophilum). In practice, there are no known curative approaches for fighting esca directly, which is a huge problem for preserving vineyards. Micro- and nanofibrous membranes from cellulose acetate (CA) and cellulose acetate/polyethylene glycol (CA/PEG) containing 5-chloro-8-hydroxyquinolinol (5-Cl8Q) were successfully prepared by electrospinning. The surface morphologies and optical and mechanical properties of the membranes were characterized by using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), water contact angle measurements and mechanical tests. It was found that the bioactive compound release was facilitated by PEG. The antifungal activities of the obtained materials against P. chlamydospora and P. aleophilum were studied. We have demonstrated that 5-Cl8Q is an efficient and sustainable antifungal agent against P. chlamydospora and P. aleophilum. Moreover, for the first time, the present study reveals the possibility of using electrospun polymer membranes containing 5-Cl8Q which impede the penetration and growth of P. chlamydospora and P. aleophilum. Thus, the obtained fibrous materials can be suitable candidates for plant protection against diverse fungi.


2018 ◽  
Vol 16 (1) ◽  
pp. 3-10
Author(s):  
Aniket P. Sarkate ◽  
Kshipra S. Karnik ◽  
Pravin S. Wakte ◽  
Ajinkya P. Sarkate ◽  
Ashwini V. Izankar ◽  
...  

Background:A novel copper-catalyzed synthesis of substituted-1,2,3-triazole derivatives has been developed and performed by Huisgen 1,3-dipolar cycloaddition reaction of azides with alkynes. The reaction is one-pot multicomponent.Objective:We state the advancement and execution of a methodology allowing for the synthesis of some new substituted 1,2,3-triazole analogues with antimicrobial activity.Methods:A series of triazole derivatives was synthesized by Huisgen 1,3-dipolar cycloaddition reaction of azides with alkynes. The structures of the synthesized compounds were elucidated and confirmed by 1H NMR, IR, MS and elemental analysis. All the synthesized compounds were tested for their antimicrobial activity against a series of strains of Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and against the strains of Candida albicans, Aspergillus flavus and Aspergillus nigar for antifungal activity, respectively.Results and Conclusion:From the antimicrobial data, it was observed that all the newly synthesized compounds showed good to moderate level of antibacterial and antifungal activity.


2021 ◽  
Vol 7 (1) ◽  
pp. 62 ◽  
Author(s):  
Majid Rasool Kamli ◽  
Vartika Srivastava ◽  
Nahid H. Hajrah ◽  
Jamal S. M. Sabir ◽  
Khalid Rehman Hakeem ◽  
...  

Candida auris is an emergent multidrug-resistant pathogen that can lead to severe bloodstream infections associated with high mortality rates, especially in hospitalized individuals suffering from serious medical problems. As Candida auris is often multidrug-resistant, there is a persistent demand for new antimycotic drugs with novel antifungal action mechanisms. Here, we reported the facile, one-pot, one-step biosynthesis of biologically active Ag-Cu-Co trimetallic nanoparticles using the aqueous extract of Salvia officinalis rich in polyphenols and flavonoids. These medicinally important phytochemicals act as a reducing agent and stabilize/capping in the nanoparticles’ fabrication process. Fourier Transform-Infrared, Scanning electron microscopy, Transmission Electron Microscopy, Energy dispersive X-Ray, X-ray powder diffraction and Thermogravimetric analysis (TGA) measurements were used to classify the as-synthesized nanoparticles. Moreover, we evaluated the antifungal mechanism of as-synthesized nanoparticles against different clinical isolates of C. auris. The minimum inhibitory concentrations and minimum fungicidal concentrations ranged from 0.39–0.78 μg/mL and 0.78–1.56 μg/mL. Cell count and viability assay further validated the fungicidal potential of Ag-Cu-Co trimetallic nanoparticles. The comprehensive analysis showed that these trimetallic nanoparticles could induce apoptosis and G2/M phase cell cycle arrest in C. auris. Furthermore, Ag-Cu-Co trimetallic nanoparticles exhibit enhanced antimicrobial properties compared to their monometallic counterparts attributed to the synergistic effect of Ag, Cu and Co present in the as-synthesized nanoparticles. Therefore, the present study suggests that the Ag-Cu-Co trimetallic nanoparticles hold the capacity to be a lead for antifungal drug development against C. auris infections.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 661
Author(s):  
Zhiwei Ying ◽  
Xinwei Chen ◽  
He Li ◽  
Xinqi Liu ◽  
Chi Zhang ◽  
...  

Soybean dreg is a by-product of soybean products production, with a large consumption in China. Low utilization value leads to random discarding, which is one of the important sources of urban pollution. In this work, porous biochar was synthesized using a one-pot method and potassium bicarbonate (KHCO3) with low-cost soybean dreg (SD) powder as the carbon precursor to investigating the adsorption of methylene blue (MB). The prepared samples were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analyzer (EA), Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), Raman spectroscopy (Raman), Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The obtained SDB-K-3 showed a high specific surface area of 1620 m2 g−1, a large pore volume of 0.7509 cm3 g−1, and an average pore diameter of 1.859 nm. The results indicated that the maximum adsorption capacity of SDB-K-3 to MB could reach 1273.51 mg g−1 at 318 K. The kinetic data were most consistent with the pseudo-second-order model and the adsorption behavior was more suitable for the Langmuir isotherm equation. This study demonstrated that the porous biochar adsorbent can be prepared from soybean dreg by high value utilization, and it could hold significant potential for dye wastewater treatment in the future.


2021 ◽  
Vol 22 (14) ◽  
pp. 7715
Author(s):  
Grzegorz Czernel ◽  
Dominika Bloch ◽  
Arkadiusz Matwijczuk ◽  
Jolanta Cieśla ◽  
Monika Kędzierska-Matysek ◽  
...  

Silver nanoparticles (AgNPs) were synthesized using aqueous honey solutions with a concentration of 2%, 10%, and 20%—AgNPs-H2, AgNPs-H10, and AgNPs-H20. The reaction was conducted at 35 °C and 70 °C. Additionally, nanoparticles obtained with the citrate method (AgNPs-C), while amphotericin B (AmB) and fluconazole were used as controls. The presence and physicochemical properties of AgNPs was affirmed by analyzing the sample with ultraviolet–visible (UV–Vis) and fluorescence spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS). The 20% honey solution caused an inhibition of the synthesis of nanoparticles at 35 °C. The antifungal activity of the AgNPs was evaluated using opportunistic human fungal pathogens Candida albicans and Candida parapsilosis. The antifungal effect was determined by the minimum inhibitory concentration (MIC) and disc diffusion assay. The highest activity in the MIC tests was observed in the AgNPs-H2 variant. AgNPs-H10 and AgNPs-H20 showed no activity or even stimulated fungal growth. The results of the Kirby–Bauer disc diffusion susceptibility test for C. parapsilosis strains indicated stronger antifungal activity of AgNPs-H than fluconazole. The study demonstrated that the antifungal activity of AgNPs is closely related to the concentration of honey used for the synthesis thereof.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 194
Author(s):  
Annabel Guttentag ◽  
Krishothman Krishnakumar ◽  
Nural Cokcetin ◽  
Steven Hainsworth ◽  
Elizabeth Harry ◽  
...  

Superficial dermatophyte infections, commonly known as tineas, are the most prevalent fungal ailment and are increasing in incidence, leading to an interest in alternative treatments. Many floral honeys possess antimicrobial activity due to high sugar, low pH, and the production of hydrogen peroxide (H2O2) from the activity of the bee-derived enzyme glucose oxidase. Australian jarrah (Eucalyptus marginata) honey produces particularly high levels of H2O2 and has been found to be potently antifungal. This study characterized the activity of jarrah honey on fungal dermatophyte species. Jarrah honey inhibited dermatophytes with minimum inhibitory concentrations (MICs) of 1.5–3.5% (w/v), which increased to ≥25% (w/v) when catalase was added. Microscopic analysis found jarrah honey inhibited the germination of Trichophyton rubrum conidia and scanning electron microscopy of mature T. rubrum hyphae after honey treatment revealed bulging and collapsed regions. When treated hyphae were stained using REDOX fluorophores these did not detect any internal oxidative stress, suggesting jarrah honey acts largely on the hyphal surface. Although H2O2 appears critical for the antifungal activity of jarrah honey and its action on fungal cells, these effects persisted when H2O2 was eliminated and could not be replicated using synthetic honey spiked with H2O2, indicating jarrah honey contains agents that augment antifungal activity.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1631
Author(s):  
Mariya Spasova ◽  
Nevena Manolova ◽  
Iliya Rashkov ◽  
Petya Tsekova ◽  
Ani Georgieva ◽  
...  

Novel eco-friendly fibrous materials with complex activities from cellulose acetate and cellulose acetate/polyethylene glycol (CA,PEG) containing 5-chloro-8-hydroxyquinoline as a model drug were obtained by electrospinning. Several methods, including scanning electron microscopy, X-ray diffraction analysis, ultraviolet-visible spectroscopy, water contact angle measurements, and mechanical tests, were utilized to characterize the obtained materials. The incorporation of PEG into the fibers facilitated the drug release. The amounts of the released drug from CA/5-Cl8Q and CA,PEG/5-Cl8Q were 78 ± 3.38% and 86 ± 3.02%, respectively (for 175 min). The antibacterial and antifungal activities of the obtained materials were studied. The measured zones of inhibition of CA/5-Cl8Q and CA,PEG/5-Cl8Q mats were 4.0 ± 0.18 and 4.5 ± 0.2 cm against S. aureus and around 4.0 ± 0.15 and 4.1 ± 0.22 cm against E. coli, respectively. The complete inhibition of the C. albicans growth was detected. The cytotoxicity of the obtained mats was tested toward HeLa cancer cells, SH-4 melanoma skin cells, and mouse BALB/c 3T3 fibroblasts as well. The CA/5-Cl8Q and CA,PEG/5-Cl8Q materials exhibited anticancer activity and low normal cell toxicity. Thus, the obtained fibrous materials can be suitable candidates for wound dressing applications and for application in local cancer treatment.


2020 ◽  
Vol 21 (22) ◽  
pp. 8681
Author(s):  
Nicolò Orsoni ◽  
Francesca Degola ◽  
Luca Nerva ◽  
Franco Bisceglie ◽  
Giorgio Spadola ◽  
...  

As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae,F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani,Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi.


Sign in / Sign up

Export Citation Format

Share Document