scholarly journals Biotransformation of Citrus Waste-II: Bio-Sorbent Materials for Removal of Dyes, Heavy Metals and Toxic Chemicals from Polluted Water

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1544
Author(s):  
Neelima Mahato ◽  
Pooja Agarwal ◽  
Debananda Mohapatra ◽  
Mukty Sinha ◽  
Archana Dhyani ◽  
...  

Industrial processes and anthropogenic activities generate huge amounts of wastes in the form of chemicals, such as heavy metals, dyes, fertilizers, pharmaceutically active chemicals, battery effluents and so on. When these chemicals are left untreated and discarded in the ground or surface waters, they not only cause pollution and harm the ecosystem but also cause toxic effects on the health of human beings, animals and food crops. There are several methods of removal of these toxic materials from the wastewaters, and adsorption by bio-sorbents has been demonstrated as one of the most inexpensive, efficient and convenient methods. Citrus is one of the largest grown fruit crops in the tropical and subtropical regions on the planet. After processing of the fruits at food processing industries, approximately half of the fruit mass is discarded as waste, which causes a number of pollution problems. Alternately, this biomass can be converted to bio-sorbents for the removal of harmful and toxic chemicals from the industrial effluents and wastewaters. The first part of this article contains a thorough review on the biotransformation of citrus waste for the production of biofuel and valuable compounds by fermentation involving microorganisms. The second and concluding part reviews the recent progress in biotransformation of citrus waste biomass (that may be remaining post-extraction of valuable compounds/biofuel generation) into efficient adsorbent substrate materials and their adsorption capacities. The article also includes the details of the synthesis process and mechanisms of adsorption processes.

2016 ◽  
Vol 35 (2) ◽  
pp. 103-113 ◽  
Author(s):  
Moshood Keke Mustapha ◽  
Joy Chinenye Ewulum

AbstractHeavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the three sites is site C > B > A, while the trend in the levels of the concentrations in the reservoir is Ni > Fe > Zn > Pb > Cd > Cu > Hg. Ni, Cd, Pb and Hg were found to be higher than the WHO guidelines for the metals in drinking water. The high concentration of these metals was from anthropogenic watershed run-off of industrial effluents, domestic sewages and agricultural materials into the reservoir coming from several human activities such as washing, bathing, fish smoking, especially in site C. The health effects of high concentration of these metals in the reservoir were highlighted. Methods for the treatment and removal of the heavy metals from the reservoir during water purification such as active carbon adsorption, coagulation-flocculation, oxidation-filtration, softening treatment and reverse osmosis process were highlighted. Other methods that could be used include phytoremediation, rhizofiltration, bisorption and bioremediation. Watershed best management practices (BMP) remains the best solution to reduce the intrusion of the heavy metals from the watershed into the reservoir.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4821
Author(s):  
Annabel Fernandes ◽  
Maria João Nunes ◽  
Ana Sofia Rodrigues ◽  
Maria José Pacheco ◽  
Lurdes Ciríaco ◽  
...  

Complex wastewater matrices present a major environmental concern. Besides the biodegradable organics, they may contain a great variety of toxic chemicals, heavy metals, and other xenobiotics. The electrochemically activated persulfate process, an efficient way to generate sulfate radicals, has been widely applied to the degradation of such complex effluents with very good results. This review presents the fundamentals of the electro-persulfate processes, highlighting the advantages and limitations, followed by an exhaustive evaluation on the application of this process for the treatment of complex industrial effluents. An overview of the main relevant experimental parameters/details and their influence on the organic load removal is presented and discussed, having in mind the application of these technologies at an industrial scale. Finally, the future perspectives for the application of the electro-persulfate processes in the treatment of complex wastewater matrices is outlined.


2019 ◽  
Vol 9 (24) ◽  
pp. 191203 ◽  
Author(s):  
Meena Kapahi ◽  
Sarita Sachdeva

Background. Rapid industrialization and anthropogenic activities such as the unmanaged use of agro-chemicals, fossil fuel burning and dumping of sewage sludge have caused soils and waterways to be severely contaminated with heavy metals. Heavy metals are non-biodegradable and persist in the environment. Hence, remediation is required to avoid heavy metal leaching or mobilization into environmental segments and to facilitate their extraction. Objectives. The present work briefly outlines the environmental occurrence of heavy metals and strategies for using microorganisms for bioremediation processes as reported in the scientific literature. Methods. Databases were searched from different libraries, including Google Scholar, Medline and Scopus. Observations across studies were then compared with the standards for discharge of environmental pollutants. Discussion. Bioremediation employs microorganisms for removing heavy metals. Microorganisms have adopted different mechanisms for bioremediation. These mechanisms are unique in their specific requirements, advantages, and disadvantages, the success of which depends chiefly upon the kind of organisms and the contaminants involved in the process. Conclusions. Heavy metal pollution creates environmental stress for human beings, plants, animals and other organisms. A complete understanding of the process and various alternatives for remediation at different steps is needed to ensure effective and economic processes. Competing interests. The authors declare no competing financial interests.


2016 ◽  
Vol 12 (8) ◽  
pp. 388
Author(s):  
Aqeela Zahra ◽  
Muhammad Tayyab ◽  
Irfan Zia Qureshi

Freshwater or wetlands are being polluted on regular basis due to the release of domestic sewage and most importantly industrial effluents that include chemicals, organic pollutants and heavy metals, and run-off from land-based activities containing leached fertilizers. Pollutants are such substances that reduce quality of water that effect directly and indirectly. The present study was carried out on Korang River Islamabad/Rawalpindi. Two different locations were selected along the Korang River. The data were collected two times during the current study period; March 2012, and October 2012. Ranid frogs (n=10) were captured from all selected sites, which were dissected to collect blood and body tissue samples. During the month of March and October the concentration of heavy metals in water samples increase and decrease significantly at both sites of Korang River. The continuous leaching of contaminants may cause abnormal tissue damage in amphibians making them more vulnerable to predation and competition and also decreased reproductive success.


2021 ◽  
Vol 43 (5) ◽  
pp. 611-611
Author(s):  
Fehmeeda Afzal Fehmeeda Afzal ◽  
Sonia Tariq Sonia Tariq ◽  
Ashraf Nadeem Ashraf Nadeem ◽  
Samiullah Samiullah ◽  
Jafar Iqbal Jafar Iqbal ◽  
...  

Heavy metals are an important class of compounds that is increasing in environment due to the anthropogenic activities. They are extremely toxic to human beings and animals. Many of them enter the water through industrial waste and effect the aquatic life. Fishes, for example, are an important source of food and they get effected by heavy metals when they ingest the infected sediments, mud and water. Heavy metals enter the food chain when infected fishes are consumed and effect humans as well. We highlight the recent (10-15 years) published work on measuring the levels of heavy metal in Mugilcephalus (Flathead mullet) fish. Out of all the methods compared and discussed in this paper, Atomic absorption spectroscopy was found to be the most preferred method and most commonly used by researchers because of its ease and cost. The most commonly used unit for metal detection in muscles was g/g (dry weight).The results also summarize advantages and drawbacks of methods used to digest muscles of the said species and heavy metal measurement. In selected studies, the levels of metals were also compared with the safe limits set by WHO, FAO and USEPA. This gives a lot of information about the edible fitness of the M.cephalus.


Author(s):  
Isiuku Beniah Obinna ◽  
*Enyoh Christian Ebere

Heavy metals and organic pollutants are ubiquitous environmental pollutants affecting the quality of soil, water and air. Over the past 5 decades, many strategies have been developed for the remediation of polluted water. Strategies involving aquatic plant use are preferable to conventional methods. In this study, an attempt was made to provide a brief review on recent progresses in research and practical applications of phytoremediation for water resources with the following objectives: (1) to discuss the toxicity of toxic chemicals pollution in water to plant, animals and human health (2) to summarise the physicochemical factors affecting  removal of toxic chemicals such as heavy metals and organic contaminants in aqueous solutions by aquatic plants; (3) to summarise and compare the removal rates of heavy metals and organic contaminants in aqueous solutions by diverse aquatic plants; and (4) to summaries chemometric models for testing aquatic plant performance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Huijuan Wang ◽  
Zhengqiu Fan ◽  
Zexing Kuang ◽  
Yuan Yuan ◽  
Huaxue Liu ◽  
...  

Daya Bay, especially in the northwestern region, which is a nature reserve with larval economic fish and shrimp populations, is no longer an unpolluted marine environment due to the recent increases in anthropogenic activities. This study collected seasonal surface sediment samples from 20 sites in northwestern Daya Bay to evaluate pollution and ecological risks and to identify possible sources and transport pathways of heavy metals (Cd, Pb, Cr, Cu, Zn, Hg, As). The results showed that all the heavy metal concentrations were below the established primary standard criteria, except for concentrations of Cr in spring, as well as Cu and Zn in autumn at several sampling stations, which had excess rates of 35, 4.76, and 4.76%, respectively. The geoaccumulation index (Igeo) values of heavy metals indicated that all sites had unpolluted to moderate pollution levels. In comparison to the samples collected in autumn, those in spring experienced a higher degree of pollution, particularly Cr and As. The ecological risk indices of heavy metals in sediments ranged from 225.86 to 734.20 in spring and from 196.69 to 567.52 in autumn, suggesting that most sites had a moderate ecological risk or a considerable ecological risk, and very few a had high ecological risk. Moreover, ArcGIS10.2 software was used to visualize their spatial distribution, and the results were similar in both spring and autumn. The results of the Pearson correlation analysis and principal component analysis showed that Cu, Hg, and Pb might be affected by anthropogenic activities, and As might be derived from natural sources such as atmospheric inputs. A cluster analysis showed that heavy metals were mainly affected by the negative impacts of human beings on the environment.


2019 ◽  
Vol 8 (4) ◽  
pp. 1495-1498

Heavy metals become a serious problem to society in the view of water pollution. Polluted water causes many disorders in human beings, animals and plants also. The concentration of heavy metals increases mainly due to the activities like mining, agricultural activities and disposal of industrial waste products. Most of the activities releases heavy metals like Mercury (Hg), chromium(Cr), arsenic(Ar), thallium (Tl), nickel (Ni), lead (Pb), and cadmium (Cd). Separation of these heavy metals from water many treatment methods are available like chemical precipitation, ion exchange, membrane separation, electrodialysis, ultra-filtration, nano filtration, coagulation, flocculation, floatation and adsorption. Adsorption is the best method out of all these methods. Activate carbon is normally used as adsorbent but it is expensive. Black babul wood is the cheapest and abundant available in nature. So treatment of heavy metals black babul wood used as adsorbent. In this article, effect of parameters like process time, initial concentration, adsorbent dosage, adsorbent particle and temperature on separation of Chromium from aqueous solution is studied.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 220
Author(s):  
Neelima Mahato ◽  
Kavita Sharma ◽  
Mukty Sinha ◽  
Archana Dhyani ◽  
Brajesh Pathak ◽  
...  

Citrus is the largest grown fruit crop on the globe with an annual production of ~110–124 million tons. Approximately, 45–55% of the whole fruit post-processing is generally discarded as waste by the food processing industries. The waste is a huge problem to the environment in terms of land and water pollution along with displeasure from aesthetic viewpoint and spread of diseases owing to its huge content of fermentable sugars. The waste can be utilized as a raw material feedstock for producing a number of valuable chemicals and products, such as bioethanol, biogas, bio-oil, organic acids, enzymes, and so on. The production of these chemicals from waste biomass gives an inexpensive alternative to the harsh chemicals used during industrial synthesis processes as well as the possibility of controlling pollution from the waste discarded to the environment. The derived chemicals can be further utilized in the production of industrially important chemicals, as solvents and building blocks of newer chemicals. Furthermore, organic acids, pectin, enzymes, prebiotics, etc., derived from citrus wastes have an edge over their synthetic counterparts in practical applications in the food processing and pharmaceutical industries.


Author(s):  
Agustina Onyebuchi Ijeomah ◽  
Rebecca Ngoholve Vesuwe ◽  
Bitrus Pam

Vegetables growing in mining areas have become a serious food safety concern because of the high levels of heavy metals always associated with mining. In this study, water used for irrigation, soil, cabbage, green pepper and green beans grown in tin mine areas of Heipang District, Barkin-Ladi LGA of Plateau State were analyzed for lead, cadmium and zinc, using Atomic Absorption Spectrophotometer (AAS). The concentrations of the heavy metals in water, soil, vegetables were all in the order Pb, >> Cd > Zn. In the vegetables, the order was: Pb → cabbage > green beans > green pepper; Cd → green beans > cabbage > green pepper; Zn → cabbage > green pepper = green beans. The transfer factors for all the metals (heavy metal in plant / heavy metal in soil) ranged from 0.95 to 1.48. There were high levels of Pb and Cd in all the vegetables, which may be attributed to the metals in the water used for irrigation. Whilst the concentration of Zn in all the samples were lower than recommended limits, the levels of Pb and Cd in the water, soil and vegetables were higher than the WHO/FEPA standard recommended limits reported for vegetables. The Cd concentrations of the vegetables also exceeded the tolerance thresholds for animals and human beings and therefore consumption of vegetable from the area would endanger the health of the population.


Sign in / Sign up

Export Citation Format

Share Document