scholarly journals Soft Array Surface-Changing Compound Eye

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8298
Author(s):  
Yu Wu ◽  
Chuanshuai Hu ◽  
Yingming Dai ◽  
Wenkai Huang ◽  
Hongquan Li ◽  
...  

The field-of-view (FOV) of compound eyes is an important index for performance evaluation. Most artificial compound eyes are optical, fabricated by imitating insect compound eyes with a fixed FOV that is difficult to adjust over a wide range. The compound eye is of great significance in the field of tracking high-speed moving objects. However, the tracking ability of a compound eye is often limited by its own FOV size and the reaction speed of the rudder unit matched with the compound eye, so that the compound eye cannot better adapt to tracking high-speed moving objects. Inspired by the eyes of many organisms, we propose a soft-array, surface-changing compound eye (SASCE). Taking soft aerodynamic models (SAM) as the carrier and an infrared sensor as the load, the basic model of the variable structure infrared compound eye (VSICE) is established using an array of infrared sensors on the carrier. The VSICE model is driven by air pressure to change the array surface of the infrared sensor. Then, the spatial position of each sensor and its viewing area are changed and, finally, the FOV of the compound eye is changed. Simultaneously, to validate the theory, we measured the air pressure, spatial sensor position, and the FOV of the compound eye. When compared with the current compound eye, the proposed one has a wider adjustable FOV.

2011 ◽  
Vol 279 (1732) ◽  
pp. 1335-1340 ◽  
Author(s):  
Brigitte Schoenemann ◽  
Christopher Castellani ◽  
Euan N. K. Clarkson ◽  
Joachim T. Haug ◽  
Andreas Maas ◽  
...  

Fossilized compound eyes from the Cambrian, isolated and three-dimensionally preserved, provide remarkable insights into the lifestyle and habitat of their owners. The tiny stalked compound eyes described here probably possessed too few facets to form a proper image, but they represent a sophisticated system for detecting moving objects. The eyes are preserved as almost solid, mace-shaped blocks of phosphate, in which the original positions of the rhabdoms in one specimen are retained as deep cavities. Analysis of the optical axes reveals four visual areas, each with different properties in acuity of vision. They are surveyed by lenses directed forwards, laterally, backwards and inwards, respectively. The most intriguing of these is the putatively inwardly orientated zone, where the optical axes, like those orientated to the front, interfere with axes of the other eye of the contralateral side. The result is a three-dimensional visual net that covers not only the front, but extends also far laterally to either side. Thus, a moving object could be perceived by a two-dimensional coordinate (which is formed by two axes of those facets, one of the left and one of the right eye, which are orientated towards the moving object) in a wide three-dimensional space. This compound eye system enables small arthropods equipped with an eye of low acuity to estimate velocity, size or distance of possible food items efficiently. The eyes are interpreted as having been derived from individuals of the early crustacean Henningsmoenicaris scutula pointing to the existence of highly efficiently developed eyes in the early evolutionary lineage leading towards the modern Crustacea.


2021 ◽  
Author(s):  
Blayze F Millward ◽  
Steve Maddock ◽  
Michael Mangan

Revealing the functioning of non-standard visual systems such as compound eyes is of interest to biologists and engineers alike. A key investigative method is to replicate the sensory apparatus using artificial systems, allowing for investigation of the visual information that drives animal behaviour when exposed to environmental cues. To date, 'Compound Eye Models' (CEMs) have largely explored the impact of features such as spectral sensitivity, field of view, and angular resolution on behaviour. Yet, the role of shape and overall structure have been largely overlooked due to modelling complexity. However, modern real-time raytracing technologies are enabling the construction of a new generation of computationally fast, high-fidelity CEMs. This work introduces new open-source CEM software (CompoundRay) alongside standardised usage techniques, while also discussing the difficulties inherent with visual data display and analysis of compound eye perceptual data. CompoundRay is capable of accurately rendering the visual perspective of a desert ant at over 5,000 frames per second in a 3D mapped natural environment. It supports ommatidial arrangements at arbitrary positions with per-ommatidial heterogeneity.


2020 ◽  
Author(s):  
Bo Dai ◽  
Liang Zhang ◽  
Chenglong Zhao ◽  
Hunter Bachman ◽  
Ryan Becker ◽  
...  

Abstract After half a billion years of evolution, arthropods have developed sophisticated compound eyes with extraordinary visual capabilities that have inspired the development of artificial compound eyes. However, the limited 2D nature of most traditional fabrication techniques makes it challenging to directly replicate these natural systems. This work demonstrates a microfluidic-assisted 3D-printing technique that can be used to replicate a 3D compound eye. The microfluidic-assisted 3D-printed eye (MAP-eye) consists of 522 microlenses on a 5 mm-diameter hemisphere to mimic the 522 ommatidia of a natural compound eye. Each microlens is connected to the bottom planar surface of the MAP-eye via intracorporal refractive-index matched waveguides to mimic the rhabdoms of a natural eye. Full-colour 170º wide-angle panoramic views and position tracking of a point source have been realized by placing the MAP-eye directly on top of a commercial planar imaging sensor; the ability to use the MAP-eye with any commercially available imaging sensors presents numerous advantages including improved scalability, high sensitivity, and high-speed imaging. As a biomimetic analogue to naturally occurring compound eyes, the MAP-eye’s full-colour 3D to 2D mapping capability has the potential to enable a wide variety of applications from improving endoscopic imaging to enhancing machine vision for facilitating human–robot interactions and improving 3D displays.


2015 ◽  
Vol 59 (01) ◽  
pp. 31-48 ◽  
Author(s):  
J. Ezequiel Martin ◽  
Thad Michael ◽  
Pablo M. Carrica

This article presents two approaches to simulate maneuvers of a model radio-controlled submarine. In the direct simulation approach, rudders, stern planes, and propellers are gridded and treated as moving objects using dynamic overset technology. The second approach couples the overset computational fluid dynamics (CFD) solver and a potential flow propeller code, with both codes exchanging velocities at the propeller plane and wake, body forces, and propeller forces and moments, whereas rudders and stern planes are still explicitly resolved. It is shown that during the maneuvers, the range of advance coefficients does not deviate much from the design point, making a coupled approach a valid choice for standard maneuvering simulations. By allowing time steps about an order of magnitude larger than for the direct simulation approach, the coupled approach can run about five times faster. The drawback is a loss of resolution in the wake as the direct propeller simulation can resolve blade vortical structures. Open water propeller curves were simulated with both the direct propeller approach and the coupled approach, showing that the coupled approach can match the direct approach performance curves for a wide range of advance coefficients. Simulations of a horizontal overshoot maneuver at two approach speeds were performed, as well as vertical overshoot and controlled turn maneuvers at high speed. Results show that both CFD approaches can reproduce the experimental results for all parameters, with errors typically within 10%.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


2021 ◽  
Author(s):  
Eric J Snider ◽  
Lauren E Cornell ◽  
Brandon M Gross ◽  
David O Zamora ◽  
Emily N Boice

ABSTRACT Introduction Open-globe ocular injuries have increased in frequency in recent combat operations due to increased use of explosive weaponry. Unfortunately, open-globe injuries have one of the worst visual outcomes for the injured warfighter, often resulting in permanent loss of vision. To improve visual recovery, injuries need to be stabilized quickly following trauma, in order to restore intraocular pressure and create a watertight seal. Here, we assess four off-the-shelf (OTS), commercially available tissue adhesives for their ability to seal military-relevant corneal perforation injuries (CPIs). Materials and Methods Adhesives were assessed using an anterior segment inflation platform and a previously developed high-speed benchtop corneal puncture model, to create injuries in porcine eyes. After injury, adhesives were applied and injury stabilization was assessed by measuring outflow rate, ocular compliance, and burst pressure, followed by histological analysis. Results Tegaderm dressings and Dermabond skin adhesive most successfully sealed injuries in preliminary testing. Across a range of injury sizes and shapes, Tegaderm performed well in smaller injury sizes, less than 2 mm in diameter, but inadequately sealed large or complex injuries. Dermabond created a watertight seal capable of maintaining ocular tissue at physiological intraocular pressure for almost all injury shapes and sizes. However, application of the adhesive was inconsistent. Histologically, after removal of the Dermabond skin adhesive, the corneal epithelium was removed and oftentimes the epithelium surface penetrated into the wound and was adhered to inner stromal tissue. Conclusions Dermabond can stabilize a wide range of CPIs; however, application is variable, which may adversely impact the corneal tissue. Without addressing these limitations, no OTS adhesive tested herein can be directly translated to CPIs. This highlights the need for development of a biomaterial product to stabilize these injuries without causing ocular damage upon removal, thus improving the poor vision prognosis for the injured warfighter.


Author(s):  
Zhiying He ◽  
Chunjun Chen ◽  
Dongwei Wang ◽  
Chao Deng ◽  
Jia Hu ◽  
...  

Based on the characteristics that the tunnel pressure wave has a fixed-morphologic form when the same train passes through the same tunnel, an applicational approach based on the iterative learning control (ILC) is developed, aiming at overcoming the drawbacks of the traditional strategy for controlling the air pressure variation inside a high-speed train carriage. To achieve the goal, the control system is mathematically modelled. Then, the problem is formulated. The task of suppressing the influence of the tunnel pressure wave on the air pressure inside the carriages is shifted as an ILC problem of tracking the comfort index with varying trial length. The algorithm of refreshing the control signal from trial to trial is determined and the process of ILC control is designed. Next, the convergence of the newly-developed applicational ILC algorithm is discussed and the algorithm is simulated by the simulation signal and field-test signal. Results show that the applicational ILC algorithm be more adaptable in handling the control of the air pressure inside carriage under the excitation of varying-amplitude, varying-scale and varying-initial-states tunnel pressure wave. Meanwhile, the matching with tunnel pressure wave makes the applicational ILC algorithm will take both the riding comfort and fresh air into consideration, which upgrades the performances when the high-speed train passing through long tunnels.


2020 ◽  
Vol 11 (1) ◽  
pp. 127
Author(s):  
Fuchun Yang ◽  
Dianrui Wang

Vibration properties of high-speed rotating and revolving planet rings with discrete and partially distributed stiffnesses were studied. The governing equations were obtained by Hamilton’s principle based on a rotating frame on the ring. The governing equations were cast in matrix differential operators and discretized, using Galerkin’s method. The eigenvalue problem was dealt with state space matrix, and the natural frequencies and vibration modes were computed in a wide range of rotation speed. The properties of natural frequencies and vibration modes with rotation speed were studied for free planet rings and planet rings with discrete and partially distributed stiffnesses. The influences of several parameters on the vibration properties of planet rings were also investigated. Finally, the forced responses of planet rings resulted from the excitation of rotating and revolving movement were studied. The results show that the revolving movement not only affects the free vibration of planet rings but results in excitation to the rings. Partially distributed stiffness changes the vibration modes heavily compared to the free planet ring. Each vibration mode comprises several nodal diameter components instead of a single component for a free planet ring. The distribution area and the number of partially distributed stiffnesses mainly affect the high-order frequencies. The forced responses caused by revolving movement are nonlinear and vary with a quasi-period of rotating speed, and the responses in the regions supported by partially distributed stiffnesses are suppressed.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4459
Author(s):  
José R. González ◽  
Charbel Damião ◽  
Maira Moran ◽  
Cristina A. Pantaleão ◽  
Rubens A. Cruz ◽  
...  

According to experts and medical literature, healthy thyroids and thyroids containing benign nodules tend to be less inflamed and less active than those with malignant nodules. It seems to be a consensus that malignant nodules have more blood veins and more blood circulation. This may be related to the maintenance of the nodule’s heat at a higher level compared with neighboring tissues. If the internal heat modifies the skin radiation, then it could be detected by infrared sensors. The goal of this work is the investigation of the factors that allow this detection, and the possible relation with any pattern referent to nodule malignancy. We aim to consider a wide range of factors, so a great number of numerical simulations of the heat transfer in the region under analysis, based on the Finite Element method, are performed to study the influence of each nodule and patient characteristics on the infrared sensor acquisition. To do so, the protocol for infrared thyroid examination used in our university’s hospital is simulated in the numerical study. This protocol presents two phases. In the first one, the body under observation is in steady state. In the second one, it is submitted to thermal stress (transient state). Both are simulated in order to verify if it is possible (by infrared sensors) to identify different behavior referent to malignant nodules. Moreover, when the simulation indicates possible important aspects, patients with and without similar characteristics are examined to confirm such influences. The results show that the tissues between skin and thyroid, as well as the nodule size, have an influence on superficial temperatures. Other thermal parameters of thyroid nodules show little influence on surface infrared emissions, for instance, those related to the vascularization of the nodule. All details of the physical parameters used in the simulations, characteristics of the real nodules and thermal examinations are publicly available, allowing these simulations to be compared with other types of heat transfer solutions and infrared examination protocols. Among the main contributions of this work, we highlight the simulation of the possible range of parameters, and definition of the simulation approach for mapping the used infrared protocol, promoting the investigation of a possible relation between the heat transfer process and the data obtained by infrared acquisitions.


2021 ◽  
Vol 11 (10) ◽  
pp. 4610
Author(s):  
Simone Berneschi ◽  
Giancarlo C. Righini ◽  
Stefano Pelli

Glasses, in their different forms and compositions, have special properties that are not found in other materials. The combination of transparency and hardness at room temperature, combined with a suitable mechanical strength and excellent chemical durability, makes this material indispensable for many applications in different technological fields (as, for instance, the optical fibres which constitute the physical carrier for high-speed communication networks as well as the transducer for a wide range of high-performance sensors). For its part, ion-exchange from molten salts is a well-established, low-cost technology capable of modifying the chemical-physical properties of glass. The synergy between ion-exchange and glass has always been a happy marriage, from its ancient historical background for the realisation of wonderful artefacts, to the discovery of novel and fascinating solutions for modern technology (e.g., integrated optics). Getting inspiration from some hot topics related to the application context of this technique, the goal of this critical review is to show how ion-exchange in glass, far from being an obsolete process, can still have an important impact in everyday life, both at a merely commercial level as well as at that of frontier research.


Sign in / Sign up

Export Citation Format

Share Document