scholarly journals Continued Hydrothermal and Radiative Pressure on Changed Cropland in China

2019 ◽  
Vol 11 (14) ◽  
pp. 3762 ◽  
Author(s):  
Yiming Fu ◽  
Yaoping Cui ◽  
Yaochen Qin ◽  
Nan Li ◽  
Liangyu Chen ◽  
...  

Both cropland and climate change over time, but the potential effects of climate change on cropland is currently not well understood. Here, we combined temporally and spatially explicit dynamics of cropland with air temperature, precipitation, and solar radiation datasets. China’s cropland showed a clear northward-shifting trend from 1990 to 2015. The cropland decreased south of the break line at 38° N, whereas it increased from the break line to northern regions. Correspondingly, the temperature showed a significant warming trend in the early part of the study period, which slowed down in later years. During the whole study period, both precipitation and solar radiation decreased over time, showed no significant linear characteristics, and the annual fluctuations were very large. The cropland areas in China showed a displacement characteristic with the increasing temperature, precipitation, and radiation. Overall, the cropland was shifting towards the high-temperature, low-precipitation, and low-radiation areas. The cropland dynamics indicate that they are likely to face severe drought and radiation pressure. Our findings imply that more resources such as irrigation may be needed for cropland, which will undoubtedly aggravate the agricultural water use in most northern regions, and the potential impacts on food security will further emerge in the future.

2019 ◽  
Vol 61 (1) ◽  
Author(s):  
Anna Omazic ◽  
Helena Bylund ◽  
Sofia Boqvist ◽  
Ann Högberg ◽  
Christer Björkman ◽  
...  

Abstract Background General knowledge on climate change effects and adaptation strategies has increased significantly in recent years. However, there is still a substantial information gap regarding the influence of climate change on infectious diseases and how these diseases should be identified. From a One Health perspective, zoonotic infections are of particular concern. The climate in Northern regions is changing faster than the global average. This study sought to identify climate-sensitive infectious diseases (CSIs) of relevance for humans and/or animals living in Northern regions. Inclusion criteria for CSIs were constructed using expert assessments. Based on these principles, 37 potential CSIs relevant for Northern regions were identified. A systematic literature search was performed in three databases using an explicit stepwise approach to determine whether the literature supports selection of these 37 potential CSIs. Results In total, 1275 nominated abstracts were read and categorised using predefined criteria. Results showed that arthropod vector-borne diseases in particular are recognised as having potential to expand their distribution towards Northern latitudes and that tick-borne encephalitis and borreliosis, midge-borne bluetongue and the parasitic infection fasciolosis can be classified as climate-sensitive. Many of the other potential CSIs considered are affected by extreme weather events, but could not be clearly classified as climate-sensitive. An additional literature search comparing awareness of climate influences on potential CSIs between 1997–2006 and 2007–2016 showed an increase in the number of papers mentioning effects of climate change. Conclusions The four CSIs identified in this study could be targeted in a systematic surveillance programme in Northern regions. It is evident that climate change can affect the epidemiology and geographical range of many infectious diseases, but there were difficulties in identifying additional CSIs, most likely because other factors may be of equal or greater importance. However, climate-ecological dynamics are constantly under change, and therefore diseases may fall in or out of the climate-sensitive definition over time. There is increasing awareness in the literature of the effects of climate change on infectious diseases over time.


ARCTIC ◽  
2020 ◽  
Vol 73 (4) ◽  
pp. 509-528
Author(s):  
Jolanta Czerniawska ◽  
Jiri Chlachula

  Current climate change in the northern regions is a well-recognized phenomenon. In central Yakutia (the Sakha Republic), the long-term trend displays a consistent mean annual air temperature (MAAT) increase from −9.6˚C (1980) to −6.7˚C (2019), corresponding to an average 0.07˚C annual rise, with pronounced temperature anomalies in the last decade. The analyzed meteorological records of the past 40 years indicate a progressing climate change pattern of increased MAAT and mean annual precipitation (MAP) that occurs in 5 – 7 yr cycles. The complex interactions of regional climatic variations with local geological and environmental conditions influence the frozen ground’s thermal balance, which, in turn, impacts thermokarst development. Co-acting factors of temperature rise and higher precipitation rates activate thermokarst lake dynamics and lake expansion following snow- and rainfall-rich preceding years. April experiences the greatest warming trend with a present (2020) 5˚C rise from 1980 with shortening of the winter season. Climate warming together with natural forest fires and anthropogenic activities (pastoral practices and logging) contribute to the taiga landscape opening due to reduced albedo and the greater exposure to solar radiation. The regional hydrologic network undergoes restructuring caused by drained meltwater released from the degraded cryolithozone with peaks of the fluvial discharge in late spring and early summer generating bank erosion. The negative effects of the progressing ground thaw, which are particularly observed in lowland locations, pose risks to local settlements and generate major environmental and engineering problems in the formerly permafrost-stable central and northern areas of Siberia.


Author(s):  
Cynthia Hitchcock ◽  
Elizabeth Gallegos ◽  
Adam Backlin ◽  
Russell Barabe ◽  
Peter Bloom ◽  
...  

Climate change and prolonged drought have negatively impacted amphibians in southern California, U.S.A. Due to the severe drought from 2012–2016, agencies and researchers had growing concern for the persistence of the arroyo toad (Anaxyrus californicus), an endangered endemic amphibian in this region. Range-wide surveys for this species had not been conducted for at least 20 years. In 2017–2020 we conducted collaborative surveys for arroyo toads at historical locations. We surveyed 87 of the 115 total sites having historical records and confirmed that the arroyo toad is currently extant in 60 of 87 sites and 19 of 25 historically occupied watersheds. Only detection/non-detection and not population size was recorded, therefore potential declines at the population level could not be assessed. In other amphibian species, body condition has been documented to decrease with a decrease in water availability. To further investigate the drought’s impact on this species, we calculated an average body condition index annually for arroyo toads using allometric measurements recorded from 1996–present. This index was plotted against precipitation records over time. Our data show that body condition did not significantly change during drought years, but hydro-regulation may be masking an effect. Our study suggests that this species shows some resiliency to climate change and drought, and that mitigating invasive species, hydro-modification, and other anthropogenic drivers may currently be the most beneficial strategy for toad conservation. Arroyo toad conservation actions may also provide simultaneous benefits to several other native species that share the same habitat.


1969 ◽  
Vol 58 (2) ◽  
pp. 193-210 ◽  
Author(s):  
Karine Gagné

Assumptions that local communities have an endogenous capacity to adapt to climate change stemming from time-tested knowledge and an inherent sense of community that prompts mobilisation are becoming increasingly common in material produced by international organisations. This discourse, which relies on ahistorical and apolitical conceptions of localities and populations, is based on ideas of timeless knowledge and places. Analysing the water-place nexus in Ladakh, in the Indian Himalayas, through a close study of glacier practices as they change over time, the article argues that local knowledge is subject to change and must be analysed in light of changing conceptions and experiences of place by the state and by local populations alike.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1604
Author(s):  
Sun Hee Hong ◽  
Yong Ho Lee ◽  
Gaeun Lee ◽  
Do-Hun Lee ◽  
Pradeep Adhikari

Predicting the distribution of invasive weeds under climate change is important for the early identification of areas that are susceptible to invasion and for the adoption of the best preventive measures. Here, we predicted the habitat suitability of 16 invasive weeds in response to climate change and land cover changes in South Korea using a maximum entropy modeling approach. Based on the predictions of the model, climate change is likely to increase habitat suitability. Currently, the area of moderately suitable and highly suitable habitats is estimated to be 8877.46 km2, and 990.29 km2, respectively, and these areas are expected to increase up to 496.52% by 2050 and 1439.65% by 2070 under the representative concentration pathways 4.5 scenario across the country. Although habitat suitability was estimated to be highest in the southern regions (<36° latitude), the central and northern regions are also predicted to have substantial increases in suitable habitat areas. Our study revealed that climate change would exacerbate the threat of northward weed invasions by shifting the climatic barriers of invasive weeds from the southern region. Thus, it is essential to initiate control and management strategies in the southern region to prevent further invasions into new areas.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 286
Author(s):  
Sang-Jin Park ◽  
Seung-Gyu Jeong ◽  
Yong Park ◽  
Sang-hyuk Kim ◽  
Dong-kun Lee ◽  
...  

Climate change poses a disproportionate risk to alpine ecosystems. Effective monitoring of forest phenological responses to climate change is critical for predicting and managing threats to alpine populations. Remote sensing can be used to monitor forest communities in dynamic landscapes for responses to climate change at the species level. Spatiotemporal fusion technology using remote sensing images is an effective way of detecting gradual phenological changes over time and seasonal responses to climate change. The spatial and temporal adaptive reflectance fusion model (STARFM) is a widely used data fusion algorithm for Landsat and MODIS imagery. This study aims to identify forest phenological characteristics and changes at the species–community level by fusing spatiotemporal data from Landsat and MODIS imagery. We fused 18 images from March to November for 2000, 2010, and 2019. (The resulting STARFM-fused images exhibited accuracies of RMSE = 0.0402 and R2 = 0.795. We found that the normalized difference vegetation index (NDVI) value increased with time, which suggests that increasing temperature due to climate change has affected the start of the growth season in the study region. From this study, we found that increasing temperature affects the phenology of these regions, and forest management strategies like monitoring phenology using remote sensing technique should evaluate the effects of climate change.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 696
Author(s):  
Imola Molnár ◽  
Lavinia Cozma ◽  
Tünde-Éva Dénes ◽  
Imre Vass ◽  
István-Zoltán Vass ◽  
...  

Global climate change, especially when involving drought and salinity, poses a major challenge to sustainable crop production, causing severe yield losses. The environmental conditions are expected to further aggravate crop production in the future as a result of continuous greenhouse gas emissions, causing further temperature rise and leading to increased evapotranspiration, severe drought, soil salinity, as well as insect and disease threats. These suboptimal growth conditions have negative impact on plant growth, survival, and crop yield. Potato is well known as a crop extremely susceptible to drought, which is primarily attributed to its shallow root system. With potato being the fourth major food crop, increasing potato productivity is thus important for food security and for feeding global population. To maintain a sustainable potato production, it is necessary to develop stress tolerant potato cultivars that cope with the already ongoing climate change. The aim of our study is to analyze the response of potato somatic hybrids to drought and salt stress under in vitro conditions; the somatic hybrids studied are the wild relative Solanum chacoense (+) Solanum tuberosum, with or without mismatch repair deficiency (MMR). Upon this selection of drought and salt tolerant genotypes, somatic hybrids and their parents were phenotyped on a semi-automated platform, and lines tolerant to medium water scarcity (20% compared to 60% soil water capacity) were identified. Although none of the parental species were tolerant to drought, some of the MMR-deficient somatic hybrids showed tolerance to drought and salt as a new trait.


2021 ◽  
Vol 13 (9) ◽  
pp. 1837
Author(s):  
Eve Laroche-Pinel ◽  
Sylvie Duthoit ◽  
Mohanad Albughdadi ◽  
Anne D. Costard ◽  
Jacques Rousseau ◽  
...  

Wine growing needs to adapt to confront climate change. In fact, the lack of water becomes more and more important in many regions. Whereas vineyards have been located in dry areas for decades, so they need special resilient varieties and/or a sufficient water supply at key development stages in case of severe drought. With climate change and the decrease of water availability, some vineyard regions face difficulties because of unsuitable variety, wrong vine management or due to the limited water access. Decision support tools are therefore required to optimize water use or to adapt agronomic practices. This study aimed at monitoring vine water status at a large scale with Sentinel-2 images. The goal was to provide a solution that would give spatialized and temporal information throughout the season on the water status of the vines. For this purpose, thirty six plots were monitored in total over three years (2018, 2019 and 2020). Vine water status was measured with stem water potential in field measurements from pea size to ripening stage. Simultaneously Sentinel-2 images were downloaded and processed to extract band reflectance values and compute vegetation indices. In our study, we tested five supervised regression machine learning algorithms to find possible relationships between stem water potential and data acquired from Sentinel-2 images (bands reflectance values and vegetation indices). Regression model using Red, NIR, Red-Edge and SWIR bands gave promising result to predict stem water potential (R2=0.40, RMSE=0.26).


2011 ◽  
Vol 8 (3) ◽  
pp. 430-433 ◽  
Author(s):  
Meghan Cooling ◽  
Stephen Hartley ◽  
Dalice A. Sim ◽  
Philip J. Lester

Synergies between invasive species and climate change are widely considered to be a major biodiversity threat. However, invasive species are also hypothesized to be susceptible to population collapse, as we demonstrate for a globally important invasive species in New Zealand. We observed Argentine ant populations to have collapsed in 40 per cent of surveyed sites. Populations had a mean survival time of 14.1 years (95% CI = 12.9–15.3 years). Resident ant communities had recovered or partly recovered after their collapse. Our models suggest that climate change will delay colony collapse, as increasing temperature and decreasing rainfall significantly increased their longevity, but only by a few years. Economic and environmental costs of invasive species may be small if populations collapse on their own accord.


2021 ◽  
Author(s):  
Shikun Sun ◽  
Yihe Tang

&lt;p&gt;The agriculture sector is one of the largest users of water and a significant source of greenhouse gas (GHG) emissions. The development of low-GHG-emission and water-conserving agriculture will inevitably be the trend in the future. Because of the physiological differences among crops and their response efficiency to external changes, changes in planting structure, climate and input of production factors will have an impact on regional agricultural water use and GHG emissions. This paper systematically analyzed the spatial-temporal evolution characteristics of crop planting structure, climate, and production factor inputs in Heilongjiang Province, the main grain-producing region of China, from 2000 to 2015, and quantified the regional agricultural water use and GHG emissions characteristics under different scenarios by using the Penman-Monteith formula and the Denitrification-Decomposition (DNDC) model. The results showed that the global warming potential (GWP) increased by 15% due to the change in planting structure. A large increase in the proportion of rice and corn sown was the main reason. During the study period, regional climate change had a positive impact on the water- saving and emission reduction of the agricultural industry. The annual water demand per unit area decreased by 19%, and the GWP decreased by 12% compared with that in 2000. The input of fertilizer and other means of production will have a significant impact on GHG emissions from farmlands. The increase in N fertilizer input significantly increased N&lt;sub&gt;2&lt;/sub&gt;O emissions, with a 5% increase in GWP. Agricultural water consumption and carbon emissions are affected by changes in climate, input of means of production, and planting structure. Therefore, multiple regulatory measures should be taken in combination with regional characteristics to realize a new layout of planting structure with low emissions, water conservation, and sustainability.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document