scholarly journals Overexpression of Citrate Synthase Increases Isocitric Acid Biosynthesis in the Yeast Yarrowia lipolytica

2020 ◽  
Vol 12 (18) ◽  
pp. 7364 ◽  
Author(s):  
Piotr Hapeta ◽  
Magdalena Rakicka-Pustułka ◽  
Piotr Juszczyk ◽  
Małgorzata Robak ◽  
Waldemar Rymowicz ◽  
...  

Yarrowia lipolytica is a non-conventional yeast producing valuable compounds, such as citric acids, from renewable raw materials. This study investigated the impact of citrate synthase overexpression on the biosynthesis of citric and isocitric acid in Y. lipolytica. Two transformants of Y. lipolytica A101.1.31 strain (efficient citric acid producer), overexpressing CIT1 or CIT2 gene (encoding proteins with citrate synthase activity), were constructed. The results revealed that overexpression of either of these genes enhances citrate synthase activity. Additionally, the cit1 knockout strain was unable to use propionate as the sole carbon source, which proves that CIT1 gene encodes a dual activity protein–citrate and 2-methylcitrate synthase. In the overexpressing mutants, a significant increase in isocitric acid biosynthesis was observed. Both CIT1 and CIT2 overexpressing strains produced citric and isocitric acid from vegetable oil in a ratio close to 1 (CA/ICA ratio for wild-type strain was 4.12).

2012 ◽  
Vol 200 ◽  
pp. 312-315
Author(s):  
Ping Zhang ◽  
Bing Tao Wang ◽  
De Gao ◽  
Li Hua Wen

The paper describes the production and the mechanical characteristics of composites made completely from renewable raw materials, the corn straw fiber and the biodegradable plastic, poly(lactic acid). The effect of straw fiber content on the mechanical properties of the composites was studied and the optimum mass fraction was 15%. To enhance the mechanical properties of the composites, two different methods were tested. Maleic anhydride as the compatilizer was introduced into the composites but the changes of the mechanical properties were small. While the other method, pre-treatment for straw fiber before blending, the mechanical properties increased obviously. The tensile strength and the impact strength were 35.6 MPa and 1.67 kJ/m2, respectively.


2021 ◽  
Vol 22 (14) ◽  
pp. 7577
Author(s):  
Ludwika Tomaszewska-Hetman ◽  
Anita Rywińska ◽  
Zbigniew Lazar ◽  
Piotr Juszczyk ◽  
Magdalena Rakicka-Pustułka ◽  
...  

The present study aimed to develop a technology for the production of dietary supplements based on yeast biomass and α-ketoglutaric acid (KGA), produced by a new transformant of Yarrowia lipolytica with improved KGA biosynthesis ability, as well to verify the usefulness of the obtained products for food and feed purposes. Transformants of Y. lipolytica were constructed to overexpress genes encoding glycerol kinase, methylcitrate synthase and mitochondrial organic acid transporter. The strains were compared in terms of growth ability in glycerol- and oil-based media as well as their suitability for KGA biosynthesis in mixed glycerol–oil medium. The impact of different C:N:P ratios on KGA production by selected strain was also evaluated. Application of the strain that overexpressed all three genes in the culture with a C:N:P ratio of 87:5:1 allowed us to obtain 53.1 g/L of KGA with productivity of 0.35 g/Lh and yield of 0.53 g/g. Finally, the possibility of obtaining three different products with desired nutritional and health-beneficial characteristics was demonstrated: (1) calcium α-ketoglutarate (CaKGA) with purity of 89.9% obtained by precipitation of KGA with CaCO3, (2) yeast biomass with very good nutritional properties, (3) fixed biomass-CaKGA preparation containing 87.2 μg/g of kynurenic acid, which increases the health-promoting value of the product.


2020 ◽  
pp. 149-156
Author(s):  
G. Gutsulyak ◽  
Yu. Gutsulyak

Theoretical and practical issues of water resources of the Carpathian region are considered. An analysis of available water resources, use, sources and scale of pollution, their protection against pollution and adverse effects and the impact of these factors on human health. The development of production and improper conduct of economic activity by the relevant people, during which it began to use more and more natural resources, led to imbalances in the natural environment, which, in turn, led to a violation of the economic situation. This exacerbates the attention to economic problems and, above all, to the reduction of non-renewable raw materials and energy resources, to environmental pollution and loss of clean water, catastrophic reduction of fresh water, fertile land, many species of plants and animals, to preserve the necessary quality of the environment. the main thing, in the end, to the impact of all negative environmental factors on human health.


2015 ◽  
Vol 31 (1) ◽  
pp. 45-64 ◽  
Author(s):  
ELŻBIETA PIETRZYK-SOKULSKA ◽  
RYSZARD UBERMAN ◽  
JOANNA KULCZYCKA

Abstract Mining is always connected with interference in the environment, especially with the landscape, hydrosphere and atmosphere. The increasing requirements of environmental standards in Europe influence actions taken by the mining industry, which leads to minimization of impact during exploration, exploitation, processing and use of raw materials and waste. Moreover, mining companies often compensate the environment transformations via the processes of reclamation and adequately chosen directions of further adaptation. New post-mining areas are characterized, in many cases, by higher values than before the commencement of mining works. The problem is still the depletion of non-renewable raw materials. This can be minimized by rational resource management and also by the effective use, recovery, recycling and substituting of minerals. These actions will have an impact not only on the extension of the operation of existing plants, but will also diminish the areas needed for extraction of new deposits. In the paper, the transformations taking place in the mining industry in Poland, as well as myths and threats connected with its further development were pointed out. The actions by this industrial branch which lead to minimization of the pressure on the environment and the applied reclamation were also shown.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 5
Author(s):  
Paola Lagonegro ◽  
Umberto Giovanella ◽  
Mariacecilia Pasini

Over the past 10 years, carbon dots (CDs) synthesized from renewable raw materials have received considerable attention in several fields for their unique photoluminescent properties. Moreover, the synthesis of CDs fully responds to the principles of circular chemistry and the concept of safe-by-design. This review will focus on the different strategies for incorporation of CDs in organic light-emitting devices (OLEDs) and on the study of the impact of CDs properties on OLED performance. The main current research outcomes and highlights are summarized to guide users towards full exploitation of these materials in optoelectronic applications.


2020 ◽  
pp. 48-55
Author(s):  
M.E. Sharanda ◽  
◽  
E.A. Bondarenko ◽  

Ethylene glycol and propylene glycol are important representatives of polyols. On an industrial scale, they are obtained from petrochemical raw materials. Within a decade, significant efforts were made for the producing of polyols from biologically renewable raw materials - carbohydrates. The general trend for carbohydrate hydrogenolysis includes application of liquid-phase process with the use of modified metal-oxide catalysts, at 120-120 ° C and pressure of 3MPa or above. So high pressure is used for the reason to increase hydrogen solubility, and also due to the high partial pressure of low boiling solvents. We supposed that usage of high boiling solvents could allow hydrogenolysis to be performed at the lower pressure. Ethylene glycol and propylene glycol are of particular interest as such kind of solvent since they are both the main products of glucose hydrogenolysis. In this work, the process of hydrogenolysis of glucose and fructose over Cu / MgO-ZrO2 catalyst have been studied at temperature range of 160-200 °C and a pressure of 0.1-0.3 MPa in a flow reactor. The solvents were simultaneously the target products of the reaction - ethylene glycol and / or propylene glycol. Gas chromatography and 13C NMR were used for the reaction products identification. It was found that the solubility of glucose in propylene glycol is 21 % by weight, and in ethylene glycol 62% by weight. It was pointed out that the process of hydrogenolysis can take place at a pressure close to atmospheric. Under these conditions, the conversion of hexoses reaches 96-100 %. The reaction products are preferably propylene glycol and ethylene glycol. The total selectivity for C3-2 polyols is 90-94 %, that is higher than in the hydrogenolysis of glucose in aqueous solution.


This article presents the results of studying the impact of housing and feeding conditions on broiler chickens of Hubbard RedBro cross, as well as the quality of products obtained when using floor and cage content, in a farm. It established that when receiving a mixed feed of own production using feed raw materials grown on a farm without the use of pesticides, a statistically significant decrease in potentially dangerous substances for animal health is recorded. Compared with factory feed, it has reduced the content of pesticides by 14 times, and mercury and arsenic by 24 times, cadmium by five times, and lead by ten times. The results of the study of economic indicators of growing Hubbard RedBro cross broiler chickens, as well as the chemical composition and quality of carcasses, indicated that there was no significant difference between the floor and cell conditions of keeping. Still, the use of a diet based on eco-feeds contributed to a statistically significant decrease in the concentration of toxic metals in the muscles of the poultry of the experimental groups. As a result, it found that the use of the studied compound feed in the diets of broiler chickens increased the indicators of Biosafety and ensured the production of environmentally safe ("organic") poultry meat products.


Domiati cheese is the most popular brand of cheese ripened in brine in the Middle East in terms of consumed quantities. This study was performed to investigate the impact of the microbiological quality of the used raw materials, the applied traditional processing techniques and ripening period on the quality and safety of the produced cheese. Three hundred random composite samples were collected from three factories at Fayoum Governorate, Egypt. Collected samples represent twenty-five each of: raw milk, table salt, calf rennet, microbial rennet, water, environmental air, whey, fresh cheese, ripened cheese & swabs from: worker hands; cheese molds and utensils; tanks. All samples were examined microbiologically for Standard Plate Count (SPC), coliforms count, Staphylococcus aureus (S. aureus) count, total yeast & mould count, presence of E. coli, Salmonellae and Listeria monocytogenes (L. monocytogenes). The mean value of SPC, coliforms, S. aureus and total yeast & mould counts ranged from (79×102 CFU/m3 for air to 13×108 CFU/g for fresh cheese), (7×102 MPN/ cm2 for tank swabs to 80×106 MPN/ml for raw milk), (9×102 CFU/g for salt to 69×106 CFU/g for fresh cheese) and (2×102 CFU/cm2 for hand swabs to 60×104 CFU/g for fresh cheese), respectively. Whereas, E. coli, Salmonella and L. monocytogenes failed to be detected in all examined samples. There were significant differences in all determined microbiological parameters (p ≤0.05) between fresh and ripened cheese which may be attributed to different adverse conditions such as water activity, pH, salt content and temperature carried out to improve the quality of the product.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 873
Author(s):  
Francisco Javier Flor-Montalvo ◽  
Agustín Sánchez-Toledo Ledesma ◽  
Eduardo Martínez Cámara ◽  
Emilio Jiménez-Macías ◽  
Jorge Luis García-Alcaraz ◽  
...  

Natural stoppers are a magnificent closure for the production of aging wines and unique wines, whose application is limited by the availability of raw materials and more specifically of cork sheets of different thickness and quality. The growing demand for quality wine bottle closures leads to the search for alternative stopper production. The two-piece stopper is an alternative since it uses non-usable plates in a conventional way for the production of quality caps. The present study has analyzed the impact of the manufacture of these two-piece stoppers using different methodologies and for different dimensions by developing an LCA (Life Cycle Assessment), concluding that the process phases of the plate, its boiling, and its stabilization, are the phases with the greatest impact. Likewise, it is detected that the impacts in all phases are relatively similar (for one kg of net cork produced), although the volumetric difference between these stoppers represents a significant difference in impacts for each unit produced.


Sign in / Sign up

Export Citation Format

Share Document