scholarly journals Examination of Zn deficiency on some physiological parameters in case of maize and cucumber seedlings

2010 ◽  
pp. 5-9
Author(s):  
Nóra Bákonyi

Zinc (Zn) is an essential micronutrient needed not only for people, but also crops. Almost half of the world’s cereal crops are deficient inZn, leading to poor crop yields. In fact, one-third (33%) of the world's population is at risk of Zn deficiency in rates, ranging from 4% to73% depending on the given country. Zn deficiency in agricultural soils is also a major global problem affecting both crop yield and quality.The Zn contents of soils in Hungary are medium or rather small. Generally, the rate of Zn deficiency is higher on sand, sandy loam or soiltypes of large organic matter contents. High pH and calcium carbonate contents are the main reasons for the low availability of Zn forplants (Karimian and Moafpouryan, 1999). It has been reported that the high-concentration application of phosphate fertilisers reduces Znavailability (Khosgoftarmanesh et al., 2006). Areas with Zn deficiency are particularly extensive in Békés, Fejér and Tolna County inHungary, yet these areas feature topsoils of high organic matter contents. Usually, Zn is absorbed strongly in the upper part the soil, and ithas been observed that the uptakeable Zn contents of soil are lower than 1.4 mg kg-1.Maize is one of the most important crops in Hungary, grown in the largest areas, and belongs to the most sensitive cultures to Zndeficiency. Zn deficiency can causes serious damage in yield (as large as 80 %), especially in case of maize. On the other hand, Zndeficiency can also cause serious reduction in the yields of dicots. One of the most important vegetables of canning industry is cucumber,which is grown all over the world.In this study, the effects of Zn deficiency have investigated on the growth of shoots and roots, relative and absolute chlorophyll contents,fresh and dry matter accumulation, total root and shoot lengths, the leaf number and leaf area of test plants in laboratory. Experimentalplants used have been maize (Zea mays L. cv. Reseda sc.) and cucumber (Cucumis sativus L. cv. Delicatess). A monocot and dicot plant havechosen a to investigate the effects of Zn deficiency, because they have different nutrient uptake mechanism.It has been observed that the unfavourable effects of Zn deficiency have caused damage in some physiological parameters, andsignificantly reduced the growth, chlorophyll contents of monocots and dicots alike.

2020 ◽  
Vol 44 ◽  
Author(s):  
Rodrigo Santos Moreira ◽  
Guilherme Henrique Expedito Lense ◽  
Leonardo Ferreira Fávero ◽  
Benedito Majela de Oliveira Junior ◽  
Ronaldo Luiz Mincato

ABSTRACT The use of sewage sludge as a source of nutrients and organic matter for agricultural soils is a well-established practice. However, few reports highlight the effect of the nutrients and potentially toxic elements provided by organic wastes application on the plant physiological parameters, such as photosynthetic activity and stomatal conductivity. We performed a greenhouse experiment with maize exposed to a dystrophic red Latosol amended with mineral fertilizer and different rates of sewage sludge with the following objectives: i) assess the nutrients and metal uptake translocation and distribution in plants and ii) evaluate the relationship between plant physiological parameters and yield indicators under the study conditions. The application of sewage sludge increased the soil organic matter, pH, and the amounts of available Ca, S, and Mg, comparing to the mineral fertilizer treatment. The plants promote a higher translocation of macronutrients to the shoots in the sewage sludge treatments, which results in higher photosynthetic activity, stomatal conductivity, and maize yield parameters. Moreover, the trace elements, which can cause toxicity in small concentrations, were founded mainly in the roots, which indicates a plant defense mechanism.


2020 ◽  
Author(s):  
Enrico Mistri ◽  
Gianluca Bianchini ◽  
Claudio Natali ◽  
Livia Vittori Antisari ◽  
Gloria Falsone ◽  
...  

<p>The exploitation of soils due to farming has produced a progressive loss of soil organic matter (SOM) over the years. At the same time, the degradation of SOM has led to a decline of several ecosystem services provided by soil, especially in mountain. Against this background, the partnership between Department of Physics and Earth Sciences of University of Ferrara and Department of Agricultural and Food Sciences of University of Bologna led to the creation of the SaveSOC2 project (Save Soil Organic Carbon), funded by Rural Development Programme of Emilia-Romagna Region. This project primarily seeks to investigate and promote carbon storage processes in agricultural soils of Emilia-Romagna Region (NE Italy). The present study outlines an overview about the SOM dynamics of “I Rodi” organic farm, located in the Modena Apennine. “I Rodi” produces and processes small organic fruits, especially raspberries. Three different sites (grassland -G, very low productive raspberries -LR, and good productive raspberries -GR) have been selected and the topsoils (0-15 cm and 15-30 cm) have been investigated. Elemental and isotopic analyses of soil C were performed using an EA-IRMS. In particular, the application of the Thermally Based Separation protocol [1] allowed the determination of both inorganic (IC) and organic (OC) carbon contents in each soil sample. OC accounted for 93.50% of the total carbon (1.72-4.84 wt.%). The negative δ<sup>13</sup>C values of the total carbon (from -27.8 to -19.7 ‰) confirmed the predominance of OC over IC in the investigated soils. The average values of OC isotopic C signature showed a decreasing trend among the three sites (-28.2, -27.2 and -25.8‰ for GR, G and LR, respectively), with the low productivity site having the highest δ<sup>13</sup>C value. The isotopic C signature of separated organic C fractions (0-15 cm topsoils) showed that humin (832-879 g/kg), which is the SOM fraction mostly interacting with the soil mineral phase and the largest pool, confirmed the observed trend (-27.5, -27.0, -26.4‰, GR, G and LR). The humic acids (6-17 g/kg) showed similar trend but lower δ<sup>13</sup>C values in all sites (-28.5, -28.0, -26.8 ‰, GR, G and LR). Finally, fulvic acids (5-10 g/kg) differed, having dissimilar trend and values of δ<sup>13</sup>C (-27.1, -26.8, -26.0 ‰ for G, GR and LR). Comparing to G, the GR data suggested that organic management i) did not decrease quantity and quality of organic matter, and ii) it was more efficient in OC stabilisation, increasing the amount of less transformed OC in both humin and humic acids (more negative δ<sup>13</sup>C values). In the LR site, instead, the observed trend can be due to low suitability of this soil to raspberries production, negatively affecting both crop yields and organic C dynamics. In our opinion, in order to combine agricultural productivity and its sustainability, more attention should be paid both to soil management and suitability in the area.</p><p>[1] Natali C., Bianchini G., Vittori Antisari L. 2018. Thermal separation coupled with elemental and isotopic analysis: A method for soil carbon characterisation. Catena 164, 150-157.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259222
Author(s):  
Hassan Mehmood ◽  
Ghulam Hassan Abbasi ◽  
Moazzam Jamil ◽  
Zaffar Malik ◽  
Muhammad Ali ◽  
...  

Caffeic acid (CA) is known as an antioxidant to scavenge reactive oxygen species (ROS), but the underlying mechanism of mediation of plant salt tolerance against various abiotic stresses by caffeic acid is only partially understood. A field experiment (120 days duration) was conducted to investigate the protective role of caffeic acid under a high saline medium (EC 8.7 dS m-1 and textural class: sandy loam) in two wheat genotypes (FSD -08 and Zincol-16). Two levels of caffeic acid (50 μM and 100 μM) were applied exogenously in combination with the salinity stress and results revealed that salt alleviation is more prominent when caffeic acid was applied at the rate of 100 μM. Under saline conditions, wheat genotypes show poor fresh and dry matter accumulation, chlorophyll contents, relative water contents (RWC), membrane stability index (MSI) and activities of antioxidant enzymes and increased uptake of Na+ ions. However, wheat genotype FSD-08 eminently responded to caffeic acid application as compared to wheat genotype Zincol-16 as demonstrated by higher growth indicators, RWC, MSI, activities of antioxidant enzymes, accumulation of mineral ions in grain along with yield attributes. In addition, caffeic acid also mitigated salt-induced oxidative stress malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents as well as significantly reduced Na+ uptake. It can be concluded that caffeic acid-induced salinity tolerance in wheat is attributed to improved plant water relations, K+ uptake, yield contents and activities of antioxidant stress enzymes.


Author(s):  
Andrey ilinsky ◽  
Alexander Nefedov ◽  
Konstantin Evsenkin

Global climatic changes, technogenic pollution by pollutants, violations of technologies of exploitation of reclaimed land lead to a decrease in fertility and soil degradation of agricultural land. Adverse weather conditions, resulting in a lack of adequate flood water, and economic difficulties in agriculture make it difficult to fill the deficit of organic matter and macronutrients in reclaimed alluvial soils. The monitoring of agrochemical properties of alluvial meadow medium-loamy soil of the stationary site (reclaimed lands of JSC «Moskovskoye» of Ryazan region), located in the floodplain of the Oka river, conducted by the Meshchersky branch of Vniigim, showed the presence and intensification of degradation changes in the soil. Thus, comparing the agrochemical indicators in the layer 0–20 cm, carried out in 1995, with the indicators of 2019, it should be noted a decrease in soil fertility. The decrease in soil quality was expressed in a decrease in the amount of mobile phosphorus by 37.6 %, mobile potassium by 53.3 %. Also, during this time there was a decrease in organic matter by 9.1 %, and an increase in soil acidity was 0.6 pH. As a result of such changes, soils lose ecological stability and become more vulnerable to adverse weather and negative anthropogenic impacts. In such a situation, advanced agricultural techniques should be actively used to obtain guaranteed, environmentally safe crop yields and restore the fertility of degraded reclaimed soils. In this regard, there is a need to develop innovative methods of fertility restoration of degraded alluvial soils in reclaimed lands using multi-component organic-mineral ameliorants. Meshchersky branch performs research work in addressing this issue.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1067
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bożena Smreczak

The objective of this paper was to investigate the molecular characterization of soil organic matter fractions (humic substances (HS): fulvic acids-FAs, humic acids-HAs, and humins-HNs), which are the most reactive soil components. A wide spectrum of spectroscopic (UV–VIS and VIS–nearIR), as well as electrochemical (zeta potential, particle size diameter, and polydispersity index), methods were applied to find the relevant differences in the behavior, formation, composition, and sorption properties of HS fractions derived from various soils. Soil material (n = 30) used for the study were sampled from the surface layer (0–30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO. Our study showed that significant differences in the molecular structures of FAs, Has, and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic–aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic, and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl, and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles. The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition, and sorption properties, which reflects their binding potential to other molecules depending on soil properties resulting from their type. The determined properties of individual HS fractions are presented as averaged characteristics over the examined soils with different physico-chemical properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yankun Sun ◽  
Jiaqi Xu ◽  
Xiangyang Miao ◽  
Xuesong Lin ◽  
Wanzhen Liu ◽  
...  

AbstractAs the global population continues to increase, global food production needs to double by 2050 to meet the demand. Given the current status of the not expansion of cultivated land area, agronomic seedlings are complete, well-formed and strong, which is the basis of high crop yields. The aim of this experiment was to study the effects of seed germination and seedling growth in response to silicon (from water-soluble Si fertilizer). The effects of Si on the maize germination, seedling growth, chlorophyll contents, osmoprotectant contents, antioxidant enzyme activities, non-enzymatic antioxidant contents and stomatal characteristics were studied by soaking Xianyu 335 in solutions of different concentrations of Si (0, 5, 10, 15, 20, and 25 g·L−1). In this study, Si treatments significantly increased the seed germination and per-plant dry weight of seedlings (P < 0.05), and the optimal concentration was 15 g·L−1. As a result of the Si treatment of the seeds, the chlorophyll content, osmotic material accumulation and antioxidant defence system activity increased, reducing membrane system damage, reactive oxygen species contents, and stomatal aperture. The results suggested that 15 g·L−1 Si significantly stimulated seed germination and promoted the growth of maize seedlings, laying a solid foundation for subsequent maize growth.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
Jonathan Suazo-Hernández ◽  
Erwin Klumpp ◽  
Nicolás Arancibia-Miranda ◽  
Patricia Poblete-Grant ◽  
Alejandra Jara ◽  
...  

Engineered nanoparticles (ENPs) present in consumer products are being released into the agricultural systems. There is little information about the direct effect of ENPs on phosphorus (P) availability, which is an essential nutrient for crop growthnaturally occurring in agricultural soils. The present study examined the effect of 1, 3, and 5% doses of Cu0 or Ag0 ENPs stabilized with L-ascorbic acid (suspension pH 2–3) on P ad- and desorption in an agricultural Andisol with total organic matter (T-OM) and with partial removal of organic matter (R-OM) by performing batch experiments. Our results showed that the adsorption kinetics data of H2PO4− on T-OM and R-OM soil samples with and without ENPs were adequately described by the pseudo-second-order (PSO) and Elovich models. The adsorption isotherm data of H2PO4− from T-OM and R-OM soil samples following ENPs addition were better fitted by the Langmuir model than the Freundlich model. When the Cu0 or Ag0 ENPs doses were increased, the pH value decreased and H2PO4− adsorption increased on T-OM and R-OM. The H2PO4− desorption (%) was lower with Cu0 ENPs than Ag0 ENPs. Overall, the incorporation of ENPs into Andisols generated an increase in P retention, which may affect agricultural crop production.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 274
Author(s):  
Sara Mayo-Prieto ◽  
Alejandra J. Porteous-Álvarez ◽  
Sergio Mezquita-García ◽  
Álvaro Rodríguez-González ◽  
Guzmán Carro-Huerga ◽  
...  

Spain has ranked 6th on the harvested bean area and 8th in bean production in the European Union (EU). The soils of this area have mixed silt loam and sandy loam texture, with moderate clay content, neutral or acidic pH, rich in organic matter and low carbonate levels, providing beans with high water absorption capacity and better organoleptic qualities after cooking. Similar to other crops, it is attacked by some phytopathogens. Hitherto, chemical methods have been used to control these organisms. However, with the Reform of the Community Agrarian Policy in the EU, the number of authorized plant protection products has been reduced to prevail food security, as well as to be sustainable in the long term, giving priority to the non-chemical methods that use biological agents, such as Trichoderma. This study aimed to investigate the relative importance of various crop soil parameters in the adaptation of Trichoderma spp. autoclaved soils (AS) and natural soils (NS) from the Protected Geographical Indication (PGI) “Alubia La Bañeza—León” that were inoculated with Trichoderma velutinum T029 and T. harzianum T059 and incubated in a culture chamber at 25 °C for 15 days. Their development was determined by quantitative PCR. Twelve soil samples were selected and analyzed from the productive zones of Astorga, La Bañeza, La Cabrera, Esla-Campos and Páramo. Their physicochemical characteristics were different by zone, as the texture of soils ranged between sandy loam and silt loam and the pH between strongly acid and slightly alkaline, as well as the organic matter (OM) concentration between low and remarkably high. Total C and N concentrations and their ratio were between medium and high in most of the soils and the rest of the micronutrients had an acceptable concentration except for Paramo’s soil. Both Trichoderma species developed better in AS than in NS, T. velutinum T029 grew better with high levels of OM, total C, ratio C:N, P, K, Fe, and Zn than T. harzianum T059 in clay soils, with the highest values of cation exchange capacity (CEC), pH, Ca, Mg and Mn. These effects were validated by Canonical Correlation Analysis (CCA), texture, particularly clay concentration, OM, electrical conductivity (EC), and pH (physical parameters) and B and Cu (soil elements) are the main factors explaining the influence in the Trichoderma development. OM, EC, C:N ratio and Cu are the main soil characteristics that influence in T. velutinum T029 development and pH in the development of T. harzianum T059.


2020 ◽  
Vol 118 (3) ◽  
pp. 325-334
Author(s):  
Wytse J. Vonk ◽  
Martin K. van Ittersum ◽  
Pytrik Reidsma ◽  
Laura Zavattaro ◽  
Luca Bechini ◽  
...  

AbstractA number of policies proposed to increase soil organic matter (SOM) content in agricultural land as a carbon sink and to enhance soil fertility. Relations between SOM content and crop yields however remain uncertain. In a recent farm survey across six European countries, farmers reported both their crop yields and their SOM content. For four widely grown crops (wheat, grain maize, sugar beet and potato), correlations were explored between reported crop yields and SOM content (N = 1264). To explain observed variability, climate, soil texture, slope, tillage intensity, fertilisation and irrigation were added as co-variables in a linear regression model. No consistent correlations were observed for any of the crop types. For wheat, a significant positive correlation (p < 0.05) was observed between SOM and crop yields in the Continental climate, with yields being on average 263 ± 4 (95% CI) kg ha−1 higher on soils with one percentage point more SOM. In the Atlantic climate, a significant negative correlation was observed for wheat, with yields being on average 75 ± 2 (95%CI) kg ha−1 lower on soils with one percentage point more SOM (p < 0.05). For sugar beet, a significant positive correlation (p < 0.05) between SOM and crop yields was suggested for all climate zones, but this depended on a number of relatively low yield observations. For potatoes and maize, no significant correlations were observed between SOM content and crop yields. These findings indicate the need for a diversified strategy across soil types, crops and climates when seeking farmers’ support to increase SOM.


2014 ◽  
Vol 50 (7) ◽  
pp. 1087-1097 ◽  
Author(s):  
Zhencai Sun ◽  
Esben Wilson Bruun ◽  
Emmanuel Arthur ◽  
Lis Wollesen de Jonge ◽  
Per Moldrup ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document