Micropower Generators and Sensors Based on Piezoelectric Polypropylene PP and Polyvinylidene Fluoride PVDF Films - Energy Harvesting from Walking

2011 ◽  
Vol 110-116 ◽  
pp. 1245-1251 ◽  
Author(s):  
Ewa Klimiec ◽  
Krzysztof Zaraska ◽  
Wiesław Zaraska ◽  
Szymon Kuczyński

This paper presents investigation of piezoelectric proprieties of polypropylene PP and polyvinylidene fluoride PVDF films at an angle of their application as micropower generators and foot pressure sensors in walking process. Obtaind micropower from single layer is about 1.7W and 5.3W for polypropylene film and about 1.7W and 3.3W for polyvinylidene fluoride film. Obtained voltage from single film layer is 8.9V to 14V for PP film and 2 to 3.4V for PVDF film. Obtained micropower from piezoelectric film and course character of voltage in function of time during walking process, depends from used film and shoe insole construction, where active element was sandwich. Recived data record of voltage, power and foot movement images from measuring system, can be use in dynamic investigations of posture defects.

2012 ◽  
Vol 79 ◽  
pp. 94-99 ◽  
Author(s):  
Ewa Klimiec ◽  
Wiesław Zaraska ◽  
Jacek Piekarski ◽  
Barbara Jasiewicz

The paper presents a dynamic measurement method of the distribution of foot pressure exerted on the ground by a four-point shoe insole, developed by authors, which can be placed in any sport footwear. The value of pressure was measured on the heel, medial midfoot, metatarsal, and great toe by recording values of a generated voltage by sensors which were made of piezoelectric polymer PVDF film 110 µm thick with printed silver electrodes. As confirmed by scanning microscope studies, the foil applied in the sensors is semi-crystalline. The shoe measurement insert consists of two polyester films without piezoelectric properties between them, electroactive polymer sensors were placed. The films were glued together. To match the measuring circuit to the sensors used, two circuits were tested, a voltage measuring circuit with an input resistance of above 1012 Ω (open circuit), and a charge measuring circuit (shorted circuit). The charge measuring circuits with the RC high-pass filter, which attenuates the slow-changing pyroelectric signal was selected as it ensures the desired measurement accuracy. As presented in the paper, as PVDF sensors are very sensitive to any mechanical deformation, it is important to properly design the shoe insole to ensure its correct use during pressure distribution measurements. The measuring system developed by the authors, allows testing of foot pathology for any length of time in a dynamic way.


2013 ◽  
Vol 303-306 ◽  
pp. 274-279
Author(s):  
Min Shu ◽  
Yi Yang Li ◽  
Xing Zhi Liao

How to improve training records and skill level, and try to minimize sports injury at the same time, has increasingly become the focus of Volleyball Professional Training Design. This paper puts forward a method to acquire the foot pressure information of volleyball athlete. By utilizing PVDF film which has the advantages of fast response, high sensitivity, good mechanical properties etc., the array of pressure sensors and signal conditioning circuit have been designed and produced. Tested, this method can accurately in real time acquire volleyball athlete’s foot dynamic pressure distribution information.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 585
Author(s):  
Ariel Ma ◽  
Jian Yu ◽  
William Uspal

Natural evaporation has recently come under consideration as a viable source of renewable energy. Demonstrations of the validity of the concept have been reported for devices incorporating carbon-based nanocomposite materials. In this study, we investigated the possibility of using polymer thin films to generate electricity from natural evaporation. We considered a polymeric system based on polyvinylidene fluoride (PVDF). Porous PVDF films were created by incorporating a variety of nanocomposite materials into the polymer structure through a simple mixing procedure. Three nanocomposite materials were considered: carbon nanotubes, graphene oxide, and silica. The evaporation-induced electricity generation was confirmed experimentally under various ambient conditions. Among the nanocomposite materials considered, mesoporous silica (SBA-15) was found to outperform the other two materials in terms of open-circuit voltage, and graphene oxide generated the highest short-circuit current. It was found that the nanocomposite material content in the PVDF film plays an important role: on the one hand, if particles are too few in number, the number of channels will be insufficient to support a strong capillary flow; on the other hand, an excessive number of particles will suppress the flow due to excessive water absorption underneath the surface. We show that the device can be modeled as a simple circuit powered by a current source with excellent agreement between the theoretical predictions and experimental data.


2014 ◽  
Vol 599-601 ◽  
pp. 1135-1138
Author(s):  
Chao Zhe Ma ◽  
Jin Song Du ◽  
Yi Yang Liu

At present, sub-micro-Newton (sub-μN) micro-force in micro-assembly and micro-manipulation is not able to be measured reliably. The piezoelectric micro-force sensors offer a lot of advantages for MEMS applications such as low power dissipation, high sensitivity, and easily integrated with piezoelectric micro-actuators. In spite of many advantages above, the research efforts are relatively limited compared to piezoresistive micro-force sensors. In this paper, Sensitive component is polyvinylidene fluoride (PVDF) and the research object is micro-force sensor based on PVDF film. Moreover, the model of micro-force and sensor’s output voltage is built up, signal processing circuit is designed, and a novel calibration method of micro-force sensor is designed to reliably measure force in the range of sub-μN. The experimental results show the PVDF sensor is designed in this paper with sub-μN resolution.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5032
Author(s):  
Alec Ikei ◽  
James Wissman ◽  
Kaushik Sampath ◽  
Gregory Yesner ◽  
Syed N. Qadri

In the functional 3D-printing field, poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) has been shown to be a more promising choice of material over polyvinylidene fluoride (PVDF), due to its ability to be poled to a high level of piezoelectric performance without a large mechanical strain ratio. In this work, a novel presentation of in situ 3D printing and poling of PVDF-TrFE is shown with a d33 performance of up to 18 pC N−1, more than an order of magnitude larger than previously reported in situ poled polymer piezoelectrics. This finding paves the way forward for pressure sensors with much higher sensitivity and accuracy. In addition, the ability of in situ pole sensors to demonstrate different performance levels is shown in a fully 3D-printed five-element sensor array, accelerating and increasing the design space for complex sensing arrays. The in situ poled sample performance was compared to the performance of samples prepared through an ex situ corona poling process.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 66 ◽  
Author(s):  
R Roopa ◽  
P Navin Karanth ◽  
S M. Kulkarni

This study reports the performance of piezo actuated compliant flexure diaphragm for micropump and MEMS application. To achieve the high performance of diaphragm at the low operating voltage compliant flexure diaphragm design is introduced. Very limited work has done on the diaphragms of micropump. Large numbers of mechanical micropumps have used plane diaphragms. The central deflection of diaphragm plays an important role in defining the micropump performance. The flow rate of mechanical type micropump strongly depends on the central deflection of diaphragm. In this paper compliant flexure diaphragms are designed for micropump to achieve higher deflection at lower operating voltage. Finite element analysis of compliant flexure diaphragm with single layer PVDF (Polyvinylidene fluoride) actuator is simulated in COMSOL. Compliant flexure diaphragms with a different number of flexures are analyzed. The central deflection of compliant flexure diaphragms is measured for driving voltages of 90V to 140V in 10 steps. The deflection of the compliant flexure diaphragm mainly depends on flexure width and length, the number of flexures in the diaphragm, PVDF thickness, diaphragm thickness and driving voltage. Use of compliant flexure diaphragm for micropump will reduce the mass and driving voltage of micropump. An attempt is made to compare the results of compliant flexure diaphragms with plane diaphragms. From the experimental results it is noticed that the compliant flexure diaphragm deflection is twice that of the plane diaphragm at same driving voltage. Deflection of three flexure and four flexure compliant diaphragms is 10.5µm and 11.5µm respectively at 140V.  


2013 ◽  
Vol 37 (3) ◽  
pp. 325-333 ◽  
Author(s):  
Wen-Yang Chang ◽  
Cheng-Hung Hsu

The electromechanical characteristics of PVDF are investigated, including the crystallization, frequency responses, hysteresis, leakage currents, current-voltage characteristics, and fatigue characteristics using X-ray diffraction and an electrometer. Results show that the frequency band of PVDF increases with increasing resistive load and capacitance. The hysteresis area of ΔH slightly increases with increasing input voltage. The magnitude of the current values increases with decreasing delay time at a given drive voltage. PVDF film induced larger degradation when the number of stress cycles was increased to about 105 cumulative cycles.


Sign in / Sign up

Export Citation Format

Share Document