Research on Influencing Factors of Wood Residual Fiber Foaming Cushion Material

2012 ◽  
Vol 511 ◽  
pp. 46-50
Author(s):  
Bin Cao ◽  
Sheng Ling Xiao ◽  
Xiao Qing Pan

A wood residual fiber foaming cushion material was prepared by using gathered wood fiber as main raw material, starch/PVA adhesive as matrix, adding a certain amount of foaming agent and related additives, hot compression molding to shape up. This paper makes an investigation of single factor on the product’s surface quality and related mechanical property. Results show that with the amount of wood residual fiber increases, the rebound resilience of the product first increases then decreases. The density decreases along with the amount of foaming agent increases. The compression strength and compression modulus of the product increases along with the amount of wood residual fiber increases, it decreases along with the amount of foaming agent increases.

2008 ◽  
Vol 368-372 ◽  
pp. 1526-1528 ◽  
Author(s):  
Jun Shou Li ◽  
Liang Li ◽  
Jian Jiang Wang ◽  
Bing She Xu ◽  
Yu Jun Yin

Al2O3-TiO-TiO2 multiphase foam ceramic was prepared with Al powders and TiO2 powders by combustion synthesis, Direct observation and metallographic microscope indicated that the pore diameter is 100~6000μm, and Archimedean method showed that the porosity is 35~50%. The influencing factors of the pore diameter and porosity and, the effects of adding SiO2 on compression strength of the Al2O3- TiO-TiO2 multiphase foam ceramic were discussed. It was shown that the addition of proper high temperature foaming agent can increase porosity and adding SiO2 can decrease porosity. The Al2O3-TiO-TiO2 multiphase foam ceramic has good mechanical properties and high-temperature resistance.


Author(s):  
Lukas Seeholzer ◽  
Stefan Süssmaier ◽  
Fabian Kneubühler ◽  
Konrad Wegener

AbstractEspecially for slicing hard and brittle materials, wire sawing with electroplated diamond wires is widely used since it combines a high surface quality with a minimum kerf loss. Furthermore, it allows a high productivity by machining multiple workpieces simultaneously. During the machining operation, the wire/workpiece interaction and thus the material removal conditions with the resulting workpiece quality are determined by the material properties and the process and tool parameters. However, applied to machining of carbon fibre reinforced polymers (CFRP), the process complexity potentially increases due to the anisotropic material properties, the elastic spring back potential of the material, and the distinct mechanical wear due to the highly abrasive carbon fibres. Therefore, this experimental study analyses different combinations of influencing factors with respect to process forces, workpiece surface temperatures at the wire entrance, and the surface quality in wire sawing unidirectional CFRP material. As main influencing factors, the cutting and feed speeds, the density of diamond grains on the wire, the workpiece thickness, and the fibre orientation of the CFRP material are analysed and discussed. For the tested parameter settings, it is found that while the influence of the grain density is negligible, workpiece thickness, cutting and feed speeds affect the process substantially. In addition, higher process forces and workpiece surface temperatures do not necessarily deteriorate the surface quality.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 519-527
Author(s):  
Wei Gong ◽  
Xianglin Pei ◽  
Xiaogang Yin ◽  
Daming Ban ◽  
Hai Fu ◽  
...  

AbstractIn this paper, acrylonitrile and hydroxypropyl acrylate are used as the binary polymerization monomers, and isooctane is used as the foaming agent to prepare high-temperature thermally expandable microcapsules. Analysis of the effect of blowing agent and crosslinking agent on the expansion properties of high-temperature thermally expandable microcapsules, the effects of foaming agent azodicarbonamide (ADCA) and micro-expansion capsule on the surface quality and foaming quality of foamed acrylonitrile–butadiene–styrene (ABS) products were investigated. The foamed product prepared by the high-temperature microcapsule has a good surface quality, the gloss is 52.3, the cell is not easily deformed, and the volume fraction is 4%; the foamed ABS/ADCA material has poor cell uniformity, the cell is easily deformed, the volume fraction is 6.5%, the surface quality is poor, and the gloss is only 8.7.


2013 ◽  
Vol 448-453 ◽  
pp. 786-790
Author(s):  
Wei Gao ◽  
Rong Fei Zhao ◽  
Qing Yu Liu ◽  
Xu Wei Bai

This paper take link mold pellet pelletizer to carry on the pellet fuel manufacture experiment with corn straw stalk. The influence of moisture content, material size and fermentation time impact on broken strength is studied by single factor experiment. Through quadratic regression orthogonal rotating combination experiment, establish mathematics equation of the factors and the straw pellet fuel broken strength and analyze the important degree of each experimental factor impact on the granulation rate. Through the optimized computation, definite optimization parameter of the highest broken strength is that raw material moisture content is 20%, fermentation time is 4h and particle size is 2.5mm. The result of verifying experiment indicat that the optimal parameter combination and the predict data measured were consistent.


2019 ◽  
Vol 25 (4) ◽  
pp. 43-49
Author(s):  
LUCIAN PAUNESCU ◽  
MARIUS FLORIN DRAGOESCU ◽  
SORIN MIRCEA AXINTE ◽  
ANA CASANDRA SEBE

The paper presents an aluminum foam experimental technique using the microwave energy. The raw material was recycling aluminum waste processed by ecological melting and gas atomizing to obtain the fine powder required in the foaming process. The powder mixture was completed with dolomite as a foaming agent. The products had a fine and homogeneous porous structure (pore size between 0.4-0.9 mm). The density (1.17-1.19 g/cm3), the compressive strength (6.83-7.01 MPa) and the thermal conductivity (5.71-5.84 W/m·K) had values almost similar to the foams made by conventional methods.


2013 ◽  
Vol 671-674 ◽  
pp. 3049-3054
Author(s):  
Cao Qian ◽  
Xi Jian Quan ◽  
Yu Yan Wang

On the basis of investigation and research, we firstly determined factors that impact manufacturing enterprises to implement green supply chain. Then, based on data of Parts of manufacturing enterprises in Shandong Province implementing green supply chain, the influencing factors of manufacturing enterprises implementing green supply chain is analyzed by factor analysis. The conclusion show that the influencing factors mainly concentrates in seven aspects that is raw material purchase, the enterprise internal management, the worn recycling, the product design, the enterprise prestige, the enterprise energy consumption, the reject processes.


2018 ◽  
Vol 15 ◽  
pp. 381-387
Author(s):  
Baohui Tian ◽  
Siegfried Kleber ◽  
Silvia Schneller ◽  
Peter Markiewicz

2019 ◽  
Vol 11 (23) ◽  
pp. 6743
Author(s):  
Jia Wan ◽  
Junping Yan ◽  
Xiaomeng Wang ◽  
Ziqiang Liu ◽  
Hui Wang ◽  
...  

Strengthening research on urban tourism competitiveness is vital in evaluating the current situation and potential of urban tourism, maintaining the sustainable development of the tourism economy and assisting in the regional macro decision making. In this study, an index system evaluation of urban tourism competitiveness in city agglomerations across the Guanzhong Plain is established by collecting cross-section data from the years 2017 and 2010. The entropy value method is adopted to determine the index weight. Cluster analysis is performed and the spatial-temporal pattern and evolution laws of urban tourism competitiveness among city agglomerations in the Guanzhong Plain are analyzed and the geographic detector utilized to discuss the influencing factors. Results show that the spatial gradient difference of urban tourism competitiveness of agglomerations in the Guanzhong Plain is significant. In 2010, it presented the characteristic of ‘the high and middle levels having a zonal distribution from east to west, and the low level was distributed along the north and south wings’. In 2017, the characteristic of ‘polarization’ became highly prominent, that is, the scope of high-level and low-level cities expanded and the scope of medium-level cities decreased. Urban tourism competitiveness in city agglomerations across the Guanzhong Plain exhibited a trend of ‘strengthening in the east, weakening in the west’. The competitiveness of resources and management shifted aggressively and supporting factors competitiveness underwent a slight change. The urban tourism competitiveness of city agglomerations in the Guanzhong Plain is generally low, while the urban tourism competitiveness of Xi’an had an absolute advantage in city agglomerations of the Guanzhong Plain. According to the cluster analysis results, resources and management competitiveness, supporting factors competitiveness, demand conditions competitiveness, situational conditions competitiveness and urban tourism competitiveness of Xi’an in 2010 and 2017 were all at an extremely high level, which was relatively higher than the index values of other cities in the city agglomerations of the Guanzhong Plain. Tourism resources, service support capacity, infrastructure support capacity, tourism income scale, tourism reception scale and economic development power are the core influencing factors of urban tourism competitiveness among city agglomerations in the Guanzhong Plain. The single factor explanatory power of destination management indicates a downward trend while the single factor explanatory power of the ecological environment condition shows an upward trend. Tourism resources are the leading interactive factor of urban tourism competitiveness, and destination management and ecological environment condition are the most significant indicators for the collaborative effect.


Processes ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 257 ◽  
Author(s):  
Yu Zhang ◽  
Wei Zhou ◽  
Ming Li ◽  
Zhanqing Chen

As the important raw material for backfill mining, broken gangue’s deformation and permeability characteristics directly affect the deformation of the overlying strata above the filling space. In this paper, through lateral compression and pressed seepage tests, the deformation and permeability characteristics of broken gangue as a function of the stress level and grading features were studied. This research indicates that the stress of broken gangue increases exponentially with an increase in strain, and the compression modulus and compression rate present a positive correlation. The samples with discontinuous grading are more difficult to compress than the continuous grading samples, and the discontinuous grading samples are tighter in accordance with the increase in compression rate. At the same time, the change range of the seepage velocity and permeability of the broken gangue decreases. Positive correction between the grading index of the broken gangue and the effect of reducing the permeability of samples is more obvious under axial compression, and less axial stress is needed to achieve the same permeability level for discontinuous grading. This paper can provide an important test basis for the design of grading parameters and the prediction of filling effects of broken gangue on backfill mining.


2018 ◽  
Vol 777 ◽  
pp. 564-568 ◽  
Author(s):  
Long He ◽  
Jin Shi Li ◽  
Mei Hua Chen ◽  
Yan Yang ◽  
Xin Peng Lou ◽  
...  

A high-performance quartz sand insulation brick was prepared by using low grade quartz sand under different sintering process conditions. The optimum sintering process conditions were obtained by analyzing the relationship between microstructure and sintering process. Through the compounding, pulping, forming, drying and sintering processes, and the performance test of the porous brick, the following conclusions can be drawn, the comprehensive performance in all aspects, the porosity is similar, the preferred high compressive strength conditions, in order to get a best The bonding point, brick body sintering temperature of 1150 °C, porosity of 74.56%, compressive strength of 2.1 MPa of porous brick, and the pores are smooth, more uniform distribution. With the prolonging of the holding time, the porosity of the porous brick is reduced, and the performance is 1h, the porosity is 77.22% and the compressive strength is 2.05 MPa. When the raw material ratio is 60% quartz sand, 30wt% kaolin, calcium carbonate 9.6wt%, foaming agent 0.4wt%, water ratio 0.9 holding time at 1h sintering at 1150°C can get better porosity and compressive strength of the insulation brick. The porous material was sintered at 1150 °C, the content of foaming agent was 0.2wt%, the ratio of water to material was 0.9, and the compressive pressure and porosity were the better.


Sign in / Sign up

Export Citation Format

Share Document