Numerical Analysis of Influence of Cutting Edge Radius on the Minimum Thickness of the Machined Layer

2016 ◽  
Vol 862 ◽  
pp. 230-237 ◽  
Author(s):  
Jaroslaw Chodor ◽  
Pawel Kaldunski

Possibilities of miniaturization of products are constantly increasing and create numerous technological challenges at the same time. One of the important aspects of the machining process, which is the essence of this work, is the geometry of the cutting tool. This work aims to investigate the influence of three different radius of cutting edge on the minimum thickness of machined layer. The phenomena on a typical incremental step were described using a step-by-step incremental procedure, with an updated Lagrangian formulation. The machining process is considered as geometrical and physical non-linear initial and boundary problem. The finite element method (FEM) and the dynamic explicit method (DEM) were used to obtain the solution. The application was developed in the ANSYS/LS-DYNA system which makes possible a complex time analysis of the physical phenomena: states of displacements, strains and stresses. Numerical computations of the strain have been conducted with the use of methodology which requires a proper definition of the contact zone, without the necessity to introduce boundary conditions. Examples of calculations are presented and show what the depth of cut at a given radius of cutting edge allows achieving a minimum thickness of cutting.

Author(s):  
Xin Liu ◽  
Xu Zhang ◽  
Dazhong Wang

Mechanical micro-cutting is one of the advanced processes for manufacturing of micro-parts. During the micro-cutting process, the thickness of the uncut chip is very close to the tip radius of the tool. The cutting edge is used to cut and extrude the workpiece. In this paper, the experiments and simulations of macro-machining nickel alloy are compared, and the process of micro-cutting nickel alloy is simulated and analyzed. In this study, four cutting edge radii, three cutting speeds, six hot cutting temperatures, and a constant depth of cut are used. The radius of the cutting edge of different sizes is theoretically analyzed and verified by simulation of material flow state, temperature, stress, strain, and cutting force. The results show that the material separation points are very close together at different cutting edge radii. The change in the radius of the cutting edge changed the contact state of the material in the cutting area, which has a large influence on the temperature and cutting force. The effects of different cutting speeds and hot working temperature on the machining process are also discussed.


2018 ◽  
Vol 7 (3.18) ◽  
pp. 79
Author(s):  
Mohammad Ashaari Kiprawi ◽  
Abdullah Yassin ◽  
Syed Tarmizi Syed Shazali ◽  
M Shahidul Islam ◽  
Mohd Azrin Mohd Said

This research paper determines the relationship between cutting edge temperature, depth of cut, cutting speed, cutting forces and flank wear. The cutting edge temperature is determined by using a pyrometer consists of Indium Arsenide (InAs) and Indium Antimonide (InSb) photocells to detect infrared radiation that are released from cutting tool’s edge and cutting forces is measured by using a dynamometer. The machining process experiment is done by end milling the outer surface of AISI 1095 carbon steel. The output signal from the photocell and dynamometer is processed and recorded in the digital oscilloscope. Based on the results, the cutting edge temperature and cutting force increases as the depth of cut increases. Meanwhile, increasing cutting speed resulting in cutting edge temperature increases but decreasing in cutting force due to thermal deformation. Also, existence of progressive flank wear at cutting tool causes an increment in cutting edge temperature and cutting force proportionally.  


Author(s):  
J. Temple Black

Tool materials used in ultramicrotomy are glass, developed by Latta and Hartmann (1) and diamond, introduced by Fernandez-Moran (2). While diamonds produce more good sections per knife edge than glass, they are expensive; require careful mounting and handling; and are time consuming to clean before and after usage, purchase from vendors (3-6 months waiting time), and regrind. Glass offers an easily accessible, inexpensive material ($0.04 per knife) with very high compressive strength (3) that can be employed in microtomy of metals (4) as well as biological materials. When the orthogonal machining process is being studied, glass offers additional advantages. Sections of metal or plastic can be dried down on the rake face, coated with Au-Pd, and examined directly in the SEM with no additional handling (5). Figure 1 shows aluminum chips microtomed with a 75° glass knife at a cutting speed of 1 mm/sec with a depth of cut of 1000 Å lying on the rake face of the knife.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


1982 ◽  
Vol 47 (3) ◽  
pp. 766-775 ◽  
Author(s):  
Václav Kolář ◽  
Jan Červenka

The paper presents results obtained by processing a series of published experimental data on heat and mass transfer during evaporation of pure liquids from the free board of a liquid film into the turbulent gas phone. The data has been processed on the basis of the earlier theory of mechanism of heat and mass transfer. In spite of the fact that this process exhibits a strong Stefan's flow, the results indicate that with a proper definition of the driving forces the agreement between theory and experiment is very good.


2021 ◽  
pp. 112972982198916
Author(s):  
Ton Van Boxtel ◽  
Mauro Pittiruti ◽  
Annemarie Arkema ◽  
Patrick Ball ◽  
Giovanni Barone ◽  
...  

The need for filtering intravenous infusions has long been recognized in the field of venous access, though hard scientific evidence about the actual indications for in-line filters has been scarce. In the last few years, several papers and a few clinical studies have raised again this issue, suggesting that the time has come for a proper definition of the type of filtration, of its potential benefit, and of its proper indications in clinical practice. The WoCoVA Foundation, whose goal is to increase the global awareness on the risk of intravenous access and on patients’ safety, developed the project of a consensus on intravenous filtration. A panel of experts in different aspects of intravenous infusion was chosen to express the current state of knowledge about filtration and to indicate the direction of future research in this field. The present document reports the final conclusions of the panel.


Author(s):  
Andre D. L. Batako ◽  
Valery V. Kuzin ◽  
Brian Rowe

High Efficiency Deep Grinding (HEDG) has been known to secure high removal rates in grinding processes at high wheel speed, relatively large depth of cut and moderately high work speed. High removal rates in HEDG are associated with very efficient grinding and secure very low specific energy comparable to conventional cutting processes. Though there exist HEDG-enabled machine tools, the wide spread of HEDG has been very limited due to the requirement for the machine tool and process design to ensure workpiece surface integrity. HEDG is an aggressive machining process that requires an adequate selection of grinding parameters in order to be successful within a given machine tool and workpiece configuration. This paper presents progress made in the development of a specialised HEDG machine. Results of HEDG processes obtained from the designed machine tool are presented to illustrate achievable high specific removal rates. Specific grinding energies are shown alongside with measured contact arc temperatures. An enhanced single-pole thermocouple technique was used to measure the actual contact temperatures in deep cutting. The performance of conventional wheels is depicted together with the performance of a CBN wheel obtained from actual industrial tests.


2018 ◽  
Vol 8 (8) ◽  
pp. 1353
Author(s):  
Tao Chen ◽  
Fei Gao ◽  
Suyan Li ◽  
Xianli Liu

Carbon fiber reinforced plastic (CFRP) is typically hard to process, because it is easy for it to generate processing damage such as burrs, tears, delamination, and so on in the machining process. Consequently, this restricts its wide spread application. This paper conducted a comparative experiment on the cutting performance of the two different-structure milling cutters, with a helical staggered edge and a rhombic edge, in milling carbon fiber composites; analyzed the wear morphologies of the two cutting tools; and thus acquired the effect of the tool structure on the machined surface quality and cutting force. The results indicated that in the whole cutting, the rhombic milling cutter with a segmented cutting edge showed better wear resistance and a more stable machined surface quality. It was not until a large area of coating shedding occurred, along with chip clogging, that the surface quality decreased significantly. At the stage of coating wear, the helical staggered milling cutter with an alternately arranged continuous cutting edge showed better machined surface quality, but when the coating fell off, its machined surface quality began to reveal damage such as groove, tear, and fiber pullout. Meanwhile, burrs occurred at the edge and the cutting force obviously increased. By contrast, for the rhombic milling cutter, both the surface roughness and cutting force increased relatively slowly.


2018 ◽  
Vol 108 (10) ◽  
pp. 736-742
Author(s):  
J. Hartig ◽  
B. Kirsch ◽  
J. Aurich

Mit Schneidkantenpräparation kann das Werkzeug im Zerspanprozess an die Bearbeitungsaufgabe angepasst werden. Homogene Präparationen können dabei entweder auf hohe Belastungen des Werkzeugs oder ein optimiertes Bearbeitungsergebnis im Sinne der Oberfläche ausgelegt werden. In diesem Beitrag wurden die Schneidkanten von Hartmetall-Wendeschneidplatten unterschiedlich inhomogen präpariert, um den unterschiedlichen Anforderungen entlang des Eingriffs Rechnung zu tragen. Neben der Werkzeugstandzeit wurde das Prozessergebnis beim Außenlängs-Runddrehen von ausferritischem Gusseisen (ADI) 900 untersucht.   The preparation of cutting edges allows for tools to be tailored to the machining process. A homogeneous preparation can either be designed for high loads in the machining process or an optimized machining result on the surface. In this article, the cutting edges of tungsten carbide indexable inserts were prepared inhomogeneously and thus individually matched to the machining task. Tool life and machining performance while turning austempered ductile iron (ADI) 900 were investigated.


Author(s):  
Souvik Das

Abstract: The word ‘life’ is a mysterious word with a chart of attributes that have neither been completed nor has been agreed upon by the race of humans. Probably the proper definition of life is impossible to identify for humans (the proof for this claim is given later) but the handbook to the secret shall be updated till the end, thanks to the inquisitive attitude of humans. For this piece, we shall adopt the description from the professional medical community of today. Though this topic falls midway between science and philosophy, this project is strictly technical. To quote dictionary.com, Life is the condition that distinguishes organisms from inorganic objects and dead organisms, being manifested by growth through metabolism, reproduction and the power of adaptation to environment- through changes originating internally; cambridge.com teaches Life is the period between birth and death, or the experience or state of being alive; medicaldictionary.thefreedictionary.com states Life is the property or quality that distinguishes living organisms from dead organisms and inanimate matter, manifested in functions such as metabolism, growth, reproduction and response to stimuli or adaptation to the environment originating from within the organisms. There are several other definitions but to summarize, we can safely state that though the concept is somewhat vague, we could indeed point out some common principles. We shall, in this project, try to replicate the characteristics so as to attain life in medical terms. (The order does not base upon importance of the listed character since the characters, all of them are absolute essentials and cannot possibly be categorized as more or less important). 1) Metabolism 2) Growth 3) Adaptability 4) Birth 5) Death 6) Self-stimulated response to environment 7) Reproduction 8) Can sustain self without foreign intervention Keywords: artificial, life, intelligence, computer, programming, algorithm This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.


Sign in / Sign up

Export Citation Format

Share Document