Thin Film Packaging Reinforcement for Overmolded MEMS

2010 ◽  
Vol 2010 (DPC) ◽  
pp. 001095-001119
Author(s):  
Gillot Charlotte ◽  
Jean-Louis Pornin ◽  
Christophe Billard ◽  
Emannuelle Lagoute ◽  
Mihel Pellat ◽  
...  

Thin Film packaging (TFP) is now well known at CEA/LETI and mainly used as a protection for MEMS against degradation which can occur during back end processes: TFP is strong enough to endure the mechanical constraints due to grinding, handling and protects the device from water during the sawing step. Our TFP process is also compatible with under bump metallisation, balling and flip chip processes. The main advantages of our TFP is a very low lost of silicon area, a low cost process with 3 mask levels, and is performed on equipments commonly used in IC fab. In this paper we will speek about process improvement for a TFP overmolded. The thermo-mechanical constraints due to the standard overmolding step (100 bars and 200°C) are much more challenging for TFP: the cavity is about 5 μm high, the cap layer 2μm thick and the polymer plugging layer 6μm thick. So TFP needs to be reinforced to withstand these high constraints. Two processes using conventional IC manufacturing technologies have been developed at wafer level with two materials. 200μm and 500μm wide cavities with TFP were reinforced with these processes and first tested under pneumatically pressure at room temperature: in case of contact between the cap and the substrate, a short circuit is measured between one electrode on the substrate and another electrode behind the cap. Then, the same devices were overmolded at 75 bars and 100 bars at 185°C. In the same run, BAW resonators with TFP and one type of reinforcement were overmolded at 100 bars. The electrical performances of these resonators after overmolding fit very well to the modelling of the test card and are very good. This Compatibility between TFP and overmolding constraints could be a cost effective solution in MEMS packaging.

2010 ◽  
Vol 2010 (1) ◽  
pp. 000548-000553
Author(s):  
Zhaozhi Li ◽  
Brian J. Lewis ◽  
Paul N. Houston ◽  
Daniel F. Baldwin ◽  
Eugene A. Stout ◽  
...  

Three Dimensional (3D) Packaging has become an industry obsession as the market demand continues to grow toward higher packaging densities and smaller form factor. In the meanwhile, the 3D die-to-wafer (D2W) packaging structure is gaining popularity due to its high manufacturing throughput and low cost per package. In this paper, the development of the assembly process for a 3D die-to-wafer packaging technology, that leverages the wafer level assembly technique and flip chip process, is introduced. Research efforts were focused on the high-density flip chip wafer level assembly techniques, as well as the challenges, innovations and solutions associated with this type of 3D packaging technology. Processing challenges and innovations addressed include flip chip fluxing methods for very fine-pitch and small bump sizes; wafer level flip chip assembly program creation and yield improvements; and set up of the Pb-free reflow profile for the assembled wafer. 100% yield was achieved on the test vehicle wafer that has totally 1,876 flip chip dies assembled on it. This work has demonstrated that the flip chip 3D die-to-wafer packaging architecture can be processed with robust yield and high manufacturing throughput, and thus to be a cost effective, rapid time to market alternative to emerging 3D wafer level integration methodologies.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000425-000445
Author(s):  
Paul Siblerud ◽  
Rozalia Beica ◽  
Bioh Kim ◽  
Erik Young

The development of IC technology is driven by the need to increase performance and functionality while reducing size, power and cost. The continuous pressure to meet those requirements has created innovative, small, cost-effective 3-D packaging technologies. 3-D packaging can offer significant advantages in performance, functionality and form factor for future technologies. Breakthrough in wafer level packaging using through silicon via technology has proven to be technologically beneficial. Integration of several key and challenging process steps with a high yield and low cost is key to the general adoption of the technology. This paper will outline the breakthroughs in cost associated with an iTSV or Via-Mid structure in a integrated process flow. Key process technologies enabling 3-D chip:Via formationInsulator, barrier and seed depositionCopper filling (plating),CMPWafer thinningDie to Wafer/chip alignment, bonding and dicing This presentation will investigate these techniques that require interdisciplinary coordination and integration that previously have not been practiced. We will review the current state of 3-D interconnects and the of a cost effective Via-first TSV integrated process.


Author(s):  
Amy Lujan

In recent years, there has been increased focus on fan-out wafer level packaging with the growing inclusion of a variety of fan-out wafer level packages in mobile products. While fan-out wafer level packaging may be the right solution for many designs, it is not always the lowest cost solution. The right packaging choice is the packaging technology that meets design requirements at the lowest cost. Flip chip packaging, a more mature technology, continues to be an alternative to fan-out wafer level packaging. It is important for many in the electronic packaging industry to be able to determine whether flip chip or fan-out wafer level packaging is the most cost-effective option. This paper will compare the cost of flip chip and fan-out wafer level packaging across a variety of designs. Additionally, the process flows for each technology will be introduced and the cost drivers highlighted. A variety of package sizes, die sizes, and design features will be covered by the cost comparison. Yield is a key component of cost and will also be considered in the analysis. Activity based cost modeling will be used for this analysis. With this type of cost modeling, a process flow is divided into a series of activities, and the total cost of each activity is accumulated. The cost of each activity is determined by analyzing the following attributes: time required, labor required, material required (consumable and permanent), capital required, and yield loss. The goal of this cost comparison is to determine which design features drive a design to be packaged more cost-effectively as a flip chip package, and which design features result in a lower cost fan-out wafer level package.


2016 ◽  
Vol 2016 (S1) ◽  
pp. S1-S46
Author(s):  
Ron Huemoeller

Over the past few years, there has been a significant shift from PCs and notebooks to smartphones and tablets as drivers of advanced packaging innovation. In fact, the overall packaging industry is doing quite well today as a result, with solid growth expected to create a market value in excess of $30B USD by 2020. This is largely due to the technology innovation in the semiconductor industry continuing to march forward at an incredible pace, with silicon advancements in new node technologies continuing on one end of the spectrum and innovative packaging solutions coming forward on the other in a complementary fashion. The pace of innovation has quickened as has the investments required to bring such technologies to production. At the packaging level, the investments required to support the advancements in silicon miniaturization and heterogeneous integration have now reached well beyond $500M USD per year. Why has the investment to support technology innovation in the packaging community grown so much? One needs to look no further than the complexity of the most advanced package technologies being used today and coming into production over the next year. Advanced packaging technologies have increased in complexity over the years, transitioning from single to multi-die packaging, enabled by 3-dimensional integration, system-in-package (SiP), wafer-level packaging (WLP), 2.5D/3D technologies and creative approached to embedding die. These new innovative packaging technologies enable more functionality and offer higher levels of integration within the same package footprint, or even more so, in an intensely reduced footprint. In an industry segment that has grown accustomed to a multitude of package options, technology consolidation seems evident, producing “The Big Five” advanced packaging platforms. These include low-cost flip chip, wafer-level chip-scale package (WLCSP), microelectromechanical systems (MEMS), laminate-based advanced system-in-package (SiP) and wafer-based advanced SiP designs. This presentation will address ‘The Big Five’ packaging platforms and how they are adding value to the Semiconductor Industry.


2015 ◽  
Vol 12 (3) ◽  
pp. 111-117
Author(s):  
Woon-Seong Kwon ◽  
Suresh Ramalingam ◽  
Xin Wu ◽  
Liam Madden ◽  
C. Y. Huang ◽  
...  

This article introduces the first comprehensive demonstration of new innovative technology comprising multiple key technologies for highly cost-effective and high-performance Xilinx field programmable gate array (FPGA), which is so-called stack silicon-less interconnect technology (SLIT) that provides the equivalent high-bandwidth connectivity and routing design-rule as stack silicon interconnect (SSI) technology at a cost-effective manner. We have successfully demonstrated the overall process integration and functions of our new SLIT-employed package using Virtex®-7 2000T FPGA product with chip-to-wafer stacking, wafer-level flux cleaning, microbump underfilling, mold encapsulation, and backside silicon removal. Of all technology elements, both full silicon removal process with faster etching and no dielectric layer damage and wafer warpage management after full silicon etching are most crucial elements to realize the SLIT technology. To manage the wafer warpage after full Si removal, a couple of knobs are identified and used such as top reinforcement layer, microbump underfill properties tuning, die thickness, die-to-die space, and total thickness adjustments. It is also discussed in the article how the wafer warpage behaves and how the wafer warpage is managed. New SLIT module shows excellent warpage characteristics of only −30 μm ∼ −40 μm at room temperature (25°C) for 25 mm × 31 mm in size and +20 μm ∼ +25 μm at reflow temperature (250°C). Thermal simulation results shows that thermal resistance of new SLIT package is almost comparable to that of standard 2000T flip-chip ball grid array (FC-BGA) package using through silicon via interposer with standard heat sink configuration and air wind condition. The reliability assessment is now under the study.


2019 ◽  
Vol 9 (3) ◽  
pp. 487 ◽  
Author(s):  
Shuping Xie ◽  
Xinjun Wan ◽  
Xiaoxiao Wei

The design and manufacture of cost-effective miniaturized optics at wafer level, usingadvanced semiconductor-like techniques, enables the production of reduced form-factor cameramodules for optical devices. However, suppressing the Fresnel reflection of wafer-level microlensesis a major challenge. Moth-eye nanostructures not only satisfy the antireflection requirementof microlens arrays, but also overcome the problem of coating fracture. This novel fabricationprocess, based on a precision wafer-level microlens array mold, is designed to meet the demandfor small form factors, high resolution, and cost effectiveness. In this study, three different kinds ofaluminum material, namely 6061-T6 aluminum alloy, high-purity polycrystalline aluminum, and purenanocrystalline aluminum were used to fabricate microlens array molds with uniform nanostructures.Of these three materials, the pure nanocrystalline aluminum microlens array mold exhibited auniform nanostructure and met the optical requirements. This study lays a solid foundation for theindustrial acceptation of novel and functional multiscale-structure wafer-level microlens arrays andprovides a practical method for the low-cost manufacture of large, high-quality wafer-level molds.


Fibers ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 56 ◽  
Author(s):  
Robert Böhm ◽  
Mike Thieme ◽  
Daniel Wohlfahrt ◽  
Daniel Wolz ◽  
Benjamin Richter ◽  
...  

Carbon concrete polyacrylonitrile (PAN)/lignin-based carbon fiber (CF) composites are a new promising material class for the building industry. The replacement of the traditional heavy and corroding steel reinforcement by carbon fiber (CF)-based reinforcements offers many significant advantages: a higher protection of environmental resources because of lower CO2 consumption during cement production, a longer lifecycle and thus, much less damage to structural components and a higher degree of design freedom because lightweight solutions can be realized. However, due to cost pressure in civil engineering, completely new process chains are required to manufacture CF-based reinforcement structures for concrete. This article describes the necessary process steps in order to develop CF reinforcement: (1) the production of cost-effective CF using novel carbon fiber lines, and (2) the fabrication of CF rebars with different geometry profiles. It was found that PAN/lignin-based CF is currently the promising material with the most promise to meet future market demands. However, significant research needs to be undertaken in order to improve the properties of lignin-based and PAN/lignin-based CF, respectively. The CF can be manufactured to CF-based rebars using different manufacturing technologies which are developed at a prototype level in this study.


1994 ◽  
Vol 364 ◽  
Author(s):  
William E. Dowling ◽  
William T. Donlon ◽  
John E. Allison

AbstractThe application of TiAl-based alloys as an exhaust valve material would allow automotive engines to operate at higher temperatures with increased efficiencies. Development of these materials at Ford initially concentrated on the Ti-48A1-1V (at%) system. This included; 1) room and elevated temperature fatigue, 2) creep and 3) tensile ductility optimization. Results from this test program in conjunction with other available data, previous ceramic experience and limited engine testing led to the conclusion that the major roadblock to implementation was not optimizing mechanical properties, but rather low cost and reliable valve manufacturing technology. When a cost effective manufacturing technology is developed, then the emphasis will shift to ensuring the product durability. Hence, the focus of the current program is the development of valve manufacturing technologies, in particular valve blank fabrication. Currently, casting appears to be the lowest cost alternative for valve blank fabrication. This paper reviews the technology development process as it pertains to TiAl-based valves.


Author(s):  
Qi Zhu ◽  
Lunyu Ma ◽  
Suresh K. Sitaraman

As the rapid advances in IC design and fabrication continue to challenge and push the electronic packaging technology, in terms of fine pitch, high performance, low cost, and good reliability, compliant interconnects show great advantages for next-generation packaging. β-fly is designed as a compliant chip-to-substrate interconnect for performing wafer-level probing and for packaging without underfill. β-fly has good compliance in all directions to compensate the coefficient of thermal expansion (CTE) mismatch between the silicon die and an organic substrate. The fabrication of β-fly is similar to standard IC fabrication, and wafer-level packaging makes it cost effective. In this work, self-weight effect and stress distribution under planar displacement loading of β-fly is studied. The effect of geometry parameters on mechanical and electrical performance of β-fly is also studied. β-fly with thinner and narrower arcuate beams with larger radius and taller post is found to have better mechanical compliance. In addition to mechanical compliance, electrical characteristics of β-fly have also been studied in this work. However, it is found that structures with excellent mechanical compliance cannot have good electrical performance. Therefore, a trade off is needed for the design of β-fly. Response surface methodology and an optimization technique have been used to select the optimal β-fly structure parameters.


Sign in / Sign up

Export Citation Format

Share Document