scholarly journals Measurement report: Short-term variation in ammonia concentrations in an urban area increased by mist evaporation and emissions from a forest canopy with bird droppings

2020 ◽  
Vol 20 (20) ◽  
pp. 11941-11954
Author(s):  
Kazuo Osada

Abstract. Local meteorological conditions and natural and anthropogenic sources affect atmospheric NH3 concentrations in urban areas. To investigate potential sources and processes of NH3 variation in urban areas, hourly NH3 and NH4+ concentrations were measured during November 2017–October 2019 in Nagoya, a central Japanese megacity. Average NH3 concentrations are high in summer and low in winter. Daily minimum NH3 concentrations are linearly correlated with daily minimum air temperatures. By contrast, daily maximum NH3 concentrations increase exponentially with temperature, suggesting that different nighttime and daytime processes and air temperatures affect concentrations. Short-term increases in NH3 concentrations of two types were examined closely. Infrequent but large increases (11 parts per billion (ppb) for 2 h) occurred after mist evaporation during daytime. During 2 years of observations, only one event of this magnitude was identified in Nagoya, although evaporation of mist and fog occurs frequently after rains. Also, short-term increases occur with a large morning peak in summer. Amplitudes of diurnal variation in NH3 concentration (daily maximum minus minimum) were analyzed on days with nonwet and low wind conditions. Amplitudes were small (ca. 2 ppb) in winter, but they increased from early summer along with new leaf growth. Amplitudes peaked in summer (ca. 20 ppb) because of droppings from hundreds of crows before roosting in trees on the campus. High daily maximum NH3 concentrations were characterized by a rapid increase occurring 2–4 h after local sunrise. In summer, peak NH3 concentrations at around 08:00 local time (LT) in sunny weather were greater than in cloudy weather, suggesting that direct sunlight particularly boosts the morning peak. Daily and seasonal findings related to the morning peak imply that stomatal emission at the site causes the increase. Differences between daily amplitudes during the two summers was explained by the different input amounts of reactive nitrogen from bird droppings and rain, suggesting that bird droppings, a temporary rich source of NH3, affected the small forest canopy.

2020 ◽  
Author(s):  
Kazuo Osada

Abstract. Short-term variations of NH3 concentrations in the urban atmosphere are affected by local meteorological conditions and variations of natural and anthropogenic sources. To investigate potential sources and processes of NH3 variation in an urban area, hourly NH3 and NH4+ concentrations were measured from November 2017 through October 2019 in Nagoya, a megacity located in central Japan. Monthly averages of NH3 concentrations were high in summer and low in winter. Daily minimum NH3 concentrations were almost linearly correlated with daily minimum air temperature. In contrast, daily maximum NH3 concentrations revealed an exponential increase with temperature, suggesting that different processes with air temperature acted during the nighttime and daytime. Short-term increases of NH3 concentrations of two types were examined closely. The first is a rare but large increase (11 ppb for 2 hr) after mist evaporation during daytime. It is noteworthy that an event of this magnitude was identified only once during two years of observations at Nagoya even though evaporation of mist or fog droplets is expected to be frequent after rain. The second short-term increase was a large morning peak in summer. After selected days were fulfilled with non-wet and weak wind conditions, the amplitude of diurnal variation of NH3 concentration (daily maximum minus minimum) was analyzed: the amplitude was small (ca. 2 ppb) in winter but it increased from early summer along with new leaf growth. It peaked in summer (up to ca. 20 ppb) during intense addition of droppings from hundreds of crows on trees in the campus assembled before roosting. The high daily maximum NH3 concentration was characterized by a rapid increase occurring 2–4 hr after local sunrise. Daily and seasonal findings related to the morning peak implied that stomatal emission at the site was responsible for the increase. The yearly difference between daily amplitudes during the two summers was explained by the difference in the input amounts of reactive nitrogen derived from bird droppings and some rain, suggesting that the canopy of a small forest affected by the bird droppings might act as a temporary but strong source of NH3.


2020 ◽  
Vol 35 (2) ◽  
pp. 345-355
Author(s):  
João Vitor de Nóvoa Pinto ◽  
Hildo Giuseppe Garcia Caldas Nunes ◽  
Daniely Florencia Silva de Souza ◽  
Deborah Luciany Pires Costa ◽  
Paulo Jorge de Oliveira Ponte de Souza

Abstract Two models aimed to estimate solar irradiance were calibrated in six locations in Northeastern Pará (Belém, Cametá, Conceição do Araguaia, Marabá, Soure, and Tucuruí). The first one is the equation of Angström-Prescott (AP), which requires observations of sunshine duration hours. The second model is a modified version of Hargreaves' radiation formula (MH), which requires observations of daily maximum and daily minimum air temperatures. Both models were calibrated to estimate daily and monthly solar radiation. The calibration of both equations for each season (i.e., dry season and wet season) in each location was also tested. AP has an average performance about 74% higher than MH for daily estimates (excluding Soure) and 83% higher than MH for monthly estimates (excluding Soure and Tucuruí). The use of seasonally calibrated equations slightly improves the performance of AP, measured by the performance index, by 0.68% and improves the performance of MH in most locations, when estimating daily solar radiation. The performance of both models is much higher when estimating monthly solar radiation than daily solar radiation, with an increase of the performance index of 10.95% for AP.


2020 ◽  
Vol 648 ◽  
pp. 111-123
Author(s):  
C Layton ◽  
MJ Cameron ◽  
M Tatsumi ◽  
V Shelamoff ◽  
JT Wright ◽  
...  

Kelp forests in many regions are experiencing disturbance from anthropogenic sources such as ocean warming, pollution, and overgrazing. Unlike natural disturbances such as storms, anthropogenic disturbances often manifest as press perturbations that cause persistent alterations to the environment. One consequence is that some kelp forests are becoming increasingly sparse and fragmented. We manipulated patch size of the kelp Ecklonia radiata over 24 mo to simulate persistent habitat fragmentation and assessed how this influenced the demography of macro- and microscopic juvenile kelp within the patches. At the beginning of the experiment, patch formation resulted in short-term increases in E. radiata recruitment in patches <1 m2. However, recruitment collapsed in those same patches over the extended period, with no recruits observed after 15 mo. Experimental transplants of microscopic and macroscopic juvenile sporophytes into the patches failed to identify the life stage impacted by the reductions in patch size, indicating that the effects may be subtle and require extended periods to manifest, and/or that another life stage is responsible. Abiotic measurements within the patches indicated that kelp were less able to engineer the sub-canopy environment in smaller patches. In particular, reduced shading of the sub-canopy in smaller patches was associated with proliferation of sediments and turf algae, which potentially contributed to the collapse of recruitment. We demonstrate the consequences of short- and longer-term degradation of E. radiata habitats and conclude that habitat fragmentation can lead to severe disruptions to kelp demography.


2021 ◽  
Vol 11 (2) ◽  
pp. 516
Author(s):  
María Piñeiro-Iglesias ◽  
Javier Andrade-Garda ◽  
Sonia Suárez-Garaboa ◽  
Soledad Muniategui-Lorenzo ◽  
Purificación López-Mahía ◽  
...  

Light-absorbing carbonaceous aerosols (including black carbon (BC)) pose serious health issues and play significant roles in atmospheric radiative properties. Two-year measurements (2015–2016) of aerosol light absorption, combined with measurements of sub-micrometric particles, were continuously conducted in A Coruña (northwest (NW) Spain) to determine their light absorption properties: absorption coefficients (σabs) and the absorption Ångström exponent (AAE). The mean and standard deviation of equivalent black carbon (eBC) during the period of study were 0.85 ± 0.83 µg m−3, which are lower than other values measured in urban areas of Spain and Europe. High eBC concentrations found in winter are associated with an increase in emissions from anthropogenic sources in combination with lower mixing layer heights and frequent stagnant conditions. The pronounced diurnal variability suggests a strong influence from local sources. AAE had an average value of 1.26 ± 0.22 which implies that both fossil fuel combustion and biomass burning influenced optical aerosol properties. This also highlights biomass combustion in suburban areas, where the use of wood for domestic heating is encouraged, as an important source of eBC. All data treatment was gathered using SCALA© as atmospheric aerosol data management support software program.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1217
Author(s):  
Nicolò Bellin ◽  
Erica Racchetti ◽  
Catia Maurone ◽  
Marco Bartoli ◽  
Valeria Rossi

Machine Learning (ML) is an increasingly accessible discipline in computer science that develops dynamic algorithms capable of data-driven decisions and whose use in ecology is growing. Fuzzy sets are suitable descriptors of ecological communities as compared to other standard algorithms and allow the description of decisions that include elements of uncertainty and vagueness. However, fuzzy sets are scarcely applied in ecology. In this work, an unsupervised machine learning algorithm, fuzzy c-means and association rules mining were applied to assess the factors influencing the assemblage composition and distribution patterns of 12 zooplankton taxa in 24 shallow ponds in northern Italy. The fuzzy c-means algorithm was implemented to classify the ponds in terms of taxa they support, and to identify the influence of chemical and physical environmental features on the assemblage patterns. Data retrieved during 2014 and 2015 were compared, taking into account that 2014 late spring and summer air temperatures were much lower than historical records, whereas 2015 mean monthly air temperatures were much warmer than historical averages. In both years, fuzzy c-means show a strong clustering of ponds in two groups, contrasting sites characterized by different physico-chemical and biological features. Climatic anomalies, affecting the temperature regime, together with the main water supply to shallow ponds (e.g., surface runoff vs. groundwater) represent disturbance factors producing large interannual differences in the chemistry, biology and short-term dynamic of small aquatic ecosystems. Unsupervised machine learning algorithms and fuzzy sets may help in catching such apparently erratic differences.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1377
Author(s):  
Weifang Shi ◽  
Nan Wang ◽  
Aixuan Xin ◽  
Linglan Liu ◽  
Jiaqi Hou ◽  
...  

Mitigating high air temperatures and heat waves is vital for decreasing air pollution and protecting public health. To improve understanding of microscale urban air temperature variation, this paper performed measurements of air temperature and relative humidity in a field of Wuhan City in the afternoon of hot summer days, and used path analysis and genetic support vector regression (SVR) to quantify the independent influences of land cover and humidity on air temperature variation. The path analysis shows that most effect of the land cover is mediated through relative humidity difference, more than four times as much as the direct effect, and that the direct effect of relative humidity difference is nearly six times that of land cover, even larger than the total effect of the land cover. The SVR simulation illustrates that land cover and relative humidity independently contribute 16.3% and 83.7%, on average, to the rise of the air temperature over the land without vegetation in the study site. An alternative strategy of increasing the humidity artificially is proposed to reduce high air temperatures in urban areas. The study would provide scientific support for the regulation of the microclimate and the mitigation of the high air temperature in urban areas.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1585
Author(s):  
Laila Darwich ◽  
Chiara Seminati ◽  
Jorge R. López-Olvera ◽  
Anna Vidal ◽  
Laia Aguirre ◽  
...  

Disease transmission among wild boars, domestic animals and humans is a public health concern, especially in areas with high wild boar densities. In this study, fecal samples of wild boars (n = 200) from different locations of the Metropolitan Area of Barcelona were analyzed by PCR to explore the frequency of β-lactamases and extended cephalosporin and carbapenem resistance genes (ESBLs) in Escherichia coli strains and the presence of toxigenic Clostridioides difficile. The prevalence of genes conferring resistance to β-lactam antimicrobials was 8.0% (16/200): blaCMY-2 (3.0%), blaTEM-1b (2.5%), blaCTX-M-14 (1.0%), blaSHV-28 (1.0%), blaCTX-M-15 (0.5%) and blaCMY-1 (0.5%). Clostridioides difficile TcdA+ was detected in two wild boars (1.0%), which is the first report of this pathogen in wild boars in Spain. Moreover, the wild boars foraging in urban and peri-urban locations were more exposed to AMRB sources than the wild boars dwelling in natural environments. In conclusion, the detection of E. coli carrying ESBL/AmpC genes and toxigenic C. difficile in wild boars foraging in urban areas reinforces the value of this game species as a sentinel of environmental AMRB sources. In addition, these wild boars can be a public and environmental health concern by disseminating AMRB and other zoonotic agents. Although this study provides the first hints of the potential anthropogenic sources of AMR, further efforts should be conducted to identify and control them.


2015 ◽  
Vol 54 (3) ◽  
pp. 658-670 ◽  
Author(s):  
Jenny Lindén ◽  
Jan Esper ◽  
Björn Holmer

AbstractUrban areas are believed to affect temperature readings, thereby biasing the estimation of twentieth-century warming at regional to global scales. The precise effect of changes in the surroundings of meteorological stations, particularly gradual changes due to urban growth, is difficult to determine. In this paper, data from 10 temperature stations within 15 km of the city of Mainz (Germany) over a period of 842 days are examined to assess the connection between temperature and the properties of the station surroundings, considering (i) built/paved area surface coverage, (ii) population, and (iii) night light intensity. These properties were examined in circles with increasing radii from the stations to identify the most influential source areas. Daily maximum temperatures Tmax, as well as daily average temperatures, are shown to be significantly influenced by elevation and were adjusted before the analysis of anthropogenic surroundings, whereas daily minimum temperatures Tmin were not. Significant correlations (p < 0.1) between temperature and all examined properties of station surroundings up to 1000 m are found, but the effects are diminished at larger distance. Other factors, such as slope and topographic position (e.g., hollows), were important, especially to Tmin. Therefore, properties of station surroundings up to 1000 m from the stations are most suitable for the assessment of potential urban influence on Tmax and Tmin in the temperate zone of central Europe.


2010 ◽  
Vol 10 (19) ◽  
pp. 9563-9578 ◽  
Author(s):  
C. C.-K. Chou ◽  
C. T. Lee ◽  
M. T. Cheng ◽  
C. S. Yuan ◽  
S. J. Chen ◽  
...  

Abstract. To investigate the physico-chemical properties of aerosols in Taiwan, an observation network was initiated in 2003. In this work, the measurements of the mass concentration and carbonaceous composition of PM10 and PM2.5 are presented. Analysis on the data collected in the first 5-years, from 2003 to 2007, showed that there was a very strong contrast in the aerosol concentration and composition between the rural and the urban/suburban stations. The five-year means of EC at the respective stations ranged from 0.9±0.04 to 4.2±0.1 μgC m−3. In rural areas, EC accounted for 2–3% of PM10 and 3–5% of PM2.5 mass loadings, comparing to 4–6% of PM10 and 4–8% of PM2.5 in the urban areas. It was found that the spatial distribution of EC was consistent with CO and NOx across the network stations, suggesting that the levels of EC over Taiwan were dominated by local sources. The measured OC was split into POC and SOC counterparts following the EC tracer method. Five-year means of POC ranged from 1.8±0.1 to 9.7±0.2 μgC m−3 among the stations. It was estimated that the POM contributed 5–17% of PM10 and 7–18% of PM2.5 in Taiwan. On the other hand, the five-year means of SOC ranged from 1.5±0.1 to 3.8±.3 μgC m−3. The mass fractions of SOM were estimated to be 9–19% in PM10 and 14–22% in PM2.5. The results showed that the SOC did not exhibit significant urban-rural contrast as did the POC and EC. A significant cross-station correlation between SOC and total oxidant was observed, which means the spatial distribution of SOC in Taiwan was dominated by the oxidant mixing ratio. Besides, correlation was also found between SOC and particulate nitrate, implying that the precursors of SOA were mainly from local anthropogenic sources. In addition to the spatial distribution, the carbonaceous aerosols also exhibited distinct seasonality. In northern Taiwan, the concentrations of all the three carbonaceous components (EC, POC, and SOC) reached their respective minima in the fall season. POC and EC increased drastically in winter and peaked in spring, whereas the SOC was characterized by a bimodal pattern with the maximal concentration in winter and a second mode in summertime. In southern Taiwan, minimal levels of POC and EC occurred consistently in summer and the maxima were observed in winter, whereas the SOC peaked in summer and declined in wintertime. The discrepancies in the seasonality of carbonaceous aerosols between northern and southern Taiwan were most likely caused by the seasonal meteorological settings that dominated the dispersion of air pollutants. Moreover, it was inferred that the Asian pollution outbreaks could have shifted the seasonal maxima of air pollutants from winter to spring in the northern Taiwan, and that the increases in biogenic SOA precursors and the enhancement in SOA yield were responsible for the elevated SOC concentrations in summer.


Author(s):  
Kyu-Ok Kim ◽  
L. R. Rilett

In recent years, microsimulation has become increasingly important in transportation system modeling. A potential issue is whether these models adequately represent reality and whether enough data exist with which to calibrate these models. There has been rapid deployment of intelligent transportation system (ITS) technologies in most urban areas of North America in the last 10 years. While ITSs are developed primarily for real-time traffic operations, the data are typically archived and available for traffic microsimulation calibration. A methodology, based on the sequential simplex algorithm, that uses ITS data to calibrate microsimulation models is presented. The test bed is a 23-km section of Interstate 10 in Houston, Texas. Two microsimulation models, CORSIM and TRANSIMS, were calibrated for two different demand matrices and three periods (morning peak, evening peak, and off-peak). It was found for the morning peak that the simplex algorithm had better results then either the default values or a simple, manual calibration. As the level of congestion decreased, the effectiveness of the simplex approach also decreased, as compared with standard techniques.


Sign in / Sign up

Export Citation Format

Share Document