Application of polymer and combined retortable package for canned food (review)

2021 ◽  
pp. 51-59
Author(s):  
Ольга Владимировна Бессараб ◽  
Наталья Евгеньевна Посокина

Рассмотрены основные виды реторт-упаковки, полимерные и комбинированные материалы, применяемые для ее изготовления. С учетом области применения такой упаковки к ней применяются определенные требования: устойчивость к стерилизации при температуре не ниже 120 °С, паро- и влагонепроницаемость, химическая инертность к консервируемым продуктам, герметичность, низкая газопроницаемость. Для придания реторт-упаковке требуемых свойств ее изготавливают из многослойных полимерных или комбинированных материалов, каждый из слоев которого выполняет определенные функции. В качестве внешних слоев чаще всего используют полипропилен или полиэтилентерефталат, так как эти полимерные материалы термически и химически устойчивы, паро- и влагонепроницаемы. В качестве серединного слоя используют материалы, являющиеся барьерами для газов - алюминиевую фольгу, металлизированные пленки, этиленвиниловый спирт, полиамид. Для изготовления таких материалов и упаковки применяют соэкструзию полимеров, многослойное литье под давлением или ламинирование. Благодаря барьерным свойствам полимерных и комбинированных материалов по отношению к кислороду реторт-упаковка обеспечивает сроки годности консервированной продукции до 5 лет. Это сравнимо с консервами в традиционной упаковке, что позволяет рассматривать реторт-упаковку из полимерных и комбинированных материалов в качестве альтернативы стеклянной и металлической упаковке. В розничной продаже консервы в реторт-упаковке из полимерных и комбинированных материалов представлены в основном мясными паштетами, пюреобразными консервами для детского питания, соусами и кетчупами, а также влажными кормами для животных. В реторт-упаковке также выпускают тушеное мясо, первые и вторые обеденные блюда, консервированный сыр, некоторые виды фруктовых и овощных консервов, но это в основном продукция для спецконтингента (например, военнослужащие, космонавты). This article describes the main types of retortable package, polymer and combined materials used for its. Taking into account the application of such package, certain requirements apply to it: resistance to sterilization at a temperature of not less than 120 °C, vapor and moisture resistance, chemical inertia to canned products, leakproofness, low gas permeability. To give the retort packaging the required properties, it is made of multilayer polymer or combined materials, each of the layers of which performs certain functions. As the outer layers, polypropylene or polyethylene terephthalate is most often used, since these polymer materials are thermally and chemically stable, vapor and moisture-proof. As the middle layer, materials that are barriers to gases are used aluminum foil, metallized films, ethylene vinyl alcohol, polyamide. For the manufacture of such materials and package, polymer co-extrusion, multi-layer injection molding or lamination are used. Due to the barrier properties of polymer and combine materials in relation to oxygen, retortable packaging provides shelf life of canned products up to 3 years. This is comparable to canned food in traditional package, which allows us to consider retortable package made of polymer and combined materials as an alternative to glass and metal packaging. In retail sales, canned food in retortable package made of polymer and combined materials is mainly represented by meat pates, canned puree for baby food, sauces and ketchups, as well as wet animal feed. The retortable packaging also produces stewed meat, dinner dishes, canned cheese, some types of fruit and vegetable canned food, but these are mainly products for special contractors (for example, military personnel, astronauts).

Author(s):  
J. Petermann ◽  
G. Broza ◽  
U. Rieck ◽  
A. Jaballah ◽  
A. Kawaguchi

Oriented overgrowth of polymer materials onto ionic crystals is well known and recently it was demonstrated that this epitaxial crystallisation can also occur in polymer/polymer systems, under certain conditions. The morphologies and the resulting physical properties of such systems will be presented, especially the influence of epitaxial interfaces on the adhesion of polymer laminates and the mechanical properties of epitaxially crystallized sandwiched layers.Materials used were polyethylene, PE, Lupolen 6021 DX (HDPE) and 1810 D (LDPE) from BASF AG; polypropylene, PP, (PPN) provided by Höchst AG and polybutene-1, PB-1, Vestolen BT from Chemische Werke Hüls. Thin oriented films were prepared according to the method of Petermann and Gohil, by winding up two different polymer films from two separately heated glass-plates simultaneously with the help of a motor driven cylinder. One double layer was used for TEM investigations, while about 1000 sandwiched layers were taken for mechanical tests.


2019 ◽  
Vol 15 (2) ◽  
pp. 154-165 ◽  
Author(s):  
Elena N. Mokshina ◽  
Mihail I. Svyatkin

Introduction. The article deals with the main traditional outbuildings of the Mordvinians, reported on their functional purpose in economic activity. The forms and types of outbuildings, as well as the main building materials used by Mordvinians are described in details. Their significance in the religious and ceremonial life of the ethnic group is shown. Materials and Methods. The research is based on traditional methods of ethnographic science, such as field observation, survey and interviews, and a comprehensive approach. Among the methods of historical science comparative-historical, historical-genetic, problem-chronological, structural-system were used. Among the general scientific methods of research logical, descriptive, narrative, generalization, classification and systematization were involved. To achieve the results of the study, the materials collected by the authors in the course of field surveys conducted in the Mordovian villages were mainly used. Results and Discussion. Traditional outbuildings were of great importance in the economic activity of the Mordovian ethnic group. According to their functional purpose, they can be divided into the following groups: for livestock and poultry (stable, chicken coop, stable, kalda), sanitary and hygienic (bath), warehouse buildings for storage of food, utensils, firewood, animal feed (barn, cellar, woodshed, hayloft), for processing of grain (sheep, riga, mill). Depending on the welfare and financial capacity of the family, the number of outbuildings was different. As a rule, the wealthier families had more outbuildings than the less wealthier ones. The main building material for the construction of these buildings was wood. Conclusion. Thus, the traditional outbuildings of the Mordvinians occupied an important place in its economic activities. At the same time, each of them had its own purpose and performed certain functions. Some buildings, such as a bath and a barn, had not only economic purpose, but also were the venue for a number of prayers and ceremonies. It is now ordinarily they have banya (bath-house), outdoor courtyard with standing in different places sheds, barn and cellar.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2588
Author(s):  
Mansuri M. Tosif ◽  
Agnieszka Najda ◽  
Aarti Bains ◽  
Grażyna Zawiślak ◽  
Grzegorz Maj ◽  
...  

In recent years, scientists have focused on research to replace petroleum-based components plastics, in an eco-friendly and cost-effective manner, with plant-derived biopolymers offering suitable mechanical properties. Moreover, due to high environmental pollution, global warming, and the foreseen shortage of oil supplies, the quest for the formulation of biobased, non-toxic, biocompatible, and biodegradable polymer films is still emerging. Several biopolymers from varied natural resources such as starch, cellulose, gums, agar, milk, cereal, and legume proteins have been used as eco-friendly packaging materials for the substitute of non-biodegradable petroleum-based plastic-based packaging materials. Among all biopolymers, starch is an edible carbohydrate complex, composed of a linear polymer, amylose, and amylopectin. They have usually been considered as a favorite choice of material for food packaging applications due to their excellent forming ability, low cost, and environmental compatibility. Although the film prepared from bio-polymer materials improves the shelf life of commodities by protecting them against interior and exterior factors, suitable barrier properties are impossible to attain with single polymeric packaging material. Therefore, the properties of edible films can be modified based on the hydrophobic–hydrophilic qualities of biomolecules. Certain chemical modifications of starch have been performed; however, the chemical residues may impart toxicity in the food commodity. Therefore, in such cases, several plant-derived polymeric combinations could be used as an effective binary blend of the polymer to improve the mechanical and barrier properties of packaging film. Recently, scientists have shown their great interest in underutilized plant-derived mucilage to synthesize biodegradable packaging material with desirable properties. Mucilage has a great potential to produce a stable polymeric network that confines starch granules that delay the release of amylose, improving the mechanical property of films. Therefore, the proposed review article is emphasized on the utilization of a blend of source and plant-derived mucilage for the synthesis of biodegradable packaging film. Herein, the synthesis process, characterization, mechanical properties, functional properties, and application of starch and mucilage-based film are discussed in detail.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1098
Author(s):  
Jibin Keloth Paduvilan ◽  
Prajitha Velayudhan ◽  
Ashin Amanulla ◽  
Hanna Joseph Maria ◽  
Allisson Saiter-Fourcin ◽  
...  

Nanomaterials have engaged response from the scientific world in recent decades due to their exceptional physical and chemical properties counter to their bulk. They have been widely used in a polymer matrix to improve mechanical, thermal, barrier, electronic and chemical properties. In rubber nanocomposites, nanofillers dispersion and the interfacial adhesion between polymer and fillers influences the composites factual properties. In the present work, a comparison of the hybrid effects of carbon black with two different nanofillers (graphene oxide and nanoclay) was studied. The 70/30 composition of chlorobutyl rubber/natural rubber elastomer blend was taken as per the blend composition optimized from our previous studies. The hybrid effects of graphene oxide and nanoclay in dispersing the nanofillers were studied mainly by analyzing nanocomposite barrier properties. The results confirm that the combined effect of carbon black with graphene oxide and nanoclay could create hybrid effects in decreasing the gas permeability. The prepared nanocomposites which partially replace the expensive chlorobutyl rubber can be used for tyre inner liner application. Additionally, the reduction in the amount of carbon black in the nanocomposite can be an added advantage of considering the environmental and economic factors.


2011 ◽  
Vol 189-193 ◽  
pp. 4356-4360 ◽  
Author(s):  
E.G. Domek

The work treats about problem of designing of gear with timing belt depending on expected character of exploitation. The work presents constructional features of transmission timing belts depending on materials used for their production. Design of composites and usage of new polymer materials allows for improvement of constructional properties of belts.


2005 ◽  
Vol 34 (4) ◽  
pp. 243-248
Author(s):  
L. Pinotti ◽  
V.M. Moretti ◽  
A. Baldi ◽  
F. Bellagamba ◽  
A. Campagnoli ◽  
...  

The protracted outbreak of mad-cow disease, repeated episodes of dioxin and mycotoxin contamination, and the issue of labelling genetically modified foods have severely shaken public confidence in the food supply industry, increasing consumer concerns about the origins of the raw materials used in both animal feed and food products. The need to develop improved techniques to characterize feed and food components has consequently become more urgent, and DNA-based technologies promise to be able to meet these needs. DNA methods can establish the origin of species in meat- and fish-based products and feed ingredients, and are the most reliable analytical approaches for authenticating processed foodstuffs. The identification of ingredients in processed feed and food is mandatory not only to ensure correct labelling and assessment of value, but also to avoid health risks related to the presence of toxic contaminants or pathogenic agents.


2017 ◽  
Vol 44 (12) ◽  
pp. 19-22
Author(s):  
A.S. Shabaev ◽  
S.Yu. Khashirova ◽  
A.K. Mikitaev ◽  
I.V. Musov ◽  
A.L. Slonov

The diffusion cell to a Tsvet-800 chromatograph for determining the gas permeability of polymeric materials has been optimised. The oxygen permeability and the carbon dioxide permeability of polymer composites based on polyethylene terephthalate and polybutylene terephthalate have been studied. The optimum compositions, combining high barrier properties and a low acetaldehyde content, have been found.


2016 ◽  
Vol 56 (8) ◽  
pp. 922-931 ◽  
Author(s):  
Xiumei Gao ◽  
Dekun Sheng ◽  
Xiangdong Liu ◽  
Tongbing Li ◽  
Fance Ji ◽  
...  

Author(s):  
Filiz Uçan ◽  
Hatice Aysun Mercimek

Requirement simple technology, low production costs, lack of polluting effects and reliability in terms of health of it is the most important advantages of edible films. Chitosan that extend the shelf life of food and increase the economic efficiency of packaging materials is one of the new materials used for edible films. Chitosan was obtained by deacetylation of chitin which is the most commonly occurred polymer after cellulose in nature, in shells of arthropods such as crab, shrimp, lobster and in cell walls of some bacteria and fungi. Chitosan has the important bioactive properties such as hemostatic, bacteriostatic, fungistatic, spermicidal, anticarcinogenic, anticholesteremic, antacids, antiulcer, wound and bone healing accelerator and stimulating the immune system. As well as these features, the film forming and barrier properties of its, chitosan is made the ideal material for edible films and coatings in antimicrobial characters. Especially, in the protection of qualities and the improving storage times of fruits and vegetables, have been revealed the potential use of chitosan. The coating food with chitosan films reduces the oxygen partial pressure in the package, maintains temperature with moisture transfer between food and its environment, declines dehydration, delays enzymatic browning in fruits and controls respiration. In addition to, chitosan are also used on issues such as the increasing the natural flavour, setting texture, increasing of the emulsifying effect, stabilization of color and deacidification.


Sign in / Sign up

Export Citation Format

Share Document