scholarly journals Fermentation kinetics and ruminal parameters of animals fed diets containing Brazil nut cake inclusion levels

2017 ◽  
Vol 38 (3) ◽  
pp. 1605
Author(s):  
Juliana Cristina de Castro Budel ◽  
Aline Fernanda Oliveira de Ramos ◽  
Geisielly Sousa Araújo ◽  
Alyne Cristina Sodré Lima ◽  
Lucieta Guerreiro Martorano ◽  
...  

The inclusion effect of 0 (control), 15, 30, 45, 60, and 100% dry matter (DM) of Brazil nut (Bertholletia excelsa Bonpl.) cake (BNC) aiming at replacing corn silage was assessed on fermentation kinetics and effective degradability (ED) by means of in vitro gas production at 3, 6, 9, 12, 24, 48, 72 and 96 h. A randomized block design was used with six treatments, three blocks, and two replications per block. France’s model was fit to the data. An in vivo experiment, conducted in fistulated ovine, assessed the effects of BNC inclusion levels of 0, 15, 30, and 45% DM replacing corn silage on ruminal parameters. Ruminal fluid samples were collected postprandial at 8, 10, 12, 14, 16, and 18 h for determining the concentrations of short-chain fatty acids (SCFA), pH, and N–NH3. A completely randomized design with repeated measures in time was used, with four treatments and three replications. Results of acetate, propionate, butyrate, acetate to propionate ratio, pH, and NH3 were submitted to analysis of variance and regression (linear and quadratic) considering treatment, time and interaction of both. In addition, the F test with a 5% (P < 0.05) significance level was applied to the data. Fermentation kinetics pattern and ED presented a linear decreasing (P < 0.05), which means a decrease in total gas production at each coproduct inclusion level. No interaction effect between treatment and time was observed for total SCFA (P > 0.40), acetic acid (P > 0.41), propionic acid (P > 0.85), butyric acid (P > 0.62) and pH (P > 0.57). BNC replacements of 0, 15, 30 and 45% did not change (P > 0.05) total SCFA concentration, as well as acetic acid concentration in ovine. When including 45% DM of BNC, concentrations (mMol/100 mL) of propionic (P < 0.001) and butyric (P < 0.022) acids was reduced in the ruminal fluid. The highest concentrations at measurement times were observed 4 hours after feeding. The pH values presented a quadratic effect on both inclusion (P < 0.001) and time (P < 0.001). An interaction was observed between treatment and time for N–NH3 concentration (mg/ml) (P < 0.001) and acetic to propionic acids ratio (P < 0.014). Fermentation kinetics was negatively affected by Brazil nut cake inclusion to corn silage-based diet. Therefore, the use of this coproduct is recommended associated with non-structural carbohydrate sources.

Author(s):  
Francine M Ciriaco ◽  
Darren D Henry ◽  
Tessa M Schulmeister ◽  
Carla D Sanford ◽  
Luara B Canal ◽  
...  

Abstract To determine the effect of CaO treated Pensacola bahiagrass (Paspalum notatum) hay on intake, ruminal fermentation parameters, and apparent total tract digestibility of nutrients, 9 ruminally cannulated Angus-crossbred steers were used in a triplicated 3 × 3 Latin square design. Steers had ad libitum access to either: 1) untreated dry hay (DH;  n = 8); 2) hay at 50% DM treated with 8.9% CaCO3 [dry matter (DM) basis; CC; n = 9]; or 3) hay at 50% DM treated with 5% CaO (DM basis; CO; n = 8). Water was added to reach 50% DM in the CC and CO diets. Ruminal fluid and blood samples were collected every 3 h for 24 h. Ruminal fluid was analyzed for pH, volatile fatty acids (VFA), and ammonia-nitrogen (NH3-N). Blood was analyzed for plasma urea nitrogen (PUN). Hay and fecal samples were collected for 4 d, 4 times daily for hay and twice daily for feces, to determine apparent total-tract digestibility of nutrients. The hay provided to steers during the digestibility period was analyzed for in vitro organic matter digestibility (IVOMD) for 48h. Data were analyzed as repeated measures for blood and ruminal fermentation parameters. Total DM intake was not affected (P ≥ 0.674) by treatment. A treatment effect (P &lt; 0.001) was observed for average ruminal pH, where steers consuming CO had the greatest pH (P &lt; 0.001). Ruminal concentration of NH3-N tended (P = 0.059) to be reduced in steers consuming CO. There was a treatment × time interaction (P = 0.023) on concentrations of PUN, where at 3 h DH and CO were lesser than CC (P ≤ 0.050) and at 21 h DH was lesser than CC (P = 0.020). Total VFA, acetate, propionate, butyrate, branched-chain VFA, and valerate concentrations were affected by treatment (P ≤ 0.035), where a reduction (P ≤ 0.034) occurred in steers consuming CO. No treatment differences were observed for total-tract digestibility of DM (P = 0.186), organic matter (P = 0.169), or crude protein (P = 0.152); however, steers consuming DH had greater neutral detergent fiber (P = 0.038) than CC and tended to be greater than CO (P = 0.082). The CO hay had greater (P = 0.005) IVOMD compared with DH and tended (P = 0.100) to be greater than CC. Bahiagrass hay treated with CaO may reduce ruminal fermentation, as indicated by decreased total VFA concentration without altering DM intake. The addition of CaO did not improve the digestibility of bahiagrass hay in vivo; however, in vitro results are contradictory and warrant further elucidation.


2017 ◽  
Vol 38 (2) ◽  
pp. 877 ◽  
Author(s):  
Antonio Carlos Homem Junior ◽  
Jane Maria Bertocco Ezequiel ◽  
Vanessa Ruiz Fávaro ◽  
Marco Túlio Costa Almeida ◽  
Josimari Regina Paschoaloto ◽  
...  

This study investigates the methane and carbon dioxide gas production, dry matter degradation, and final pH values obtained during the in vitro incubation of corn grain, soybean hulls, citrus pulp, corn silage, and crude glycerin. Experiments were performed using a randomized block design with four incubation periods. Each period featured four replicates per ingredient and four blanks, totaling 16 repetitions per ingredient. The lowest total amount of produced gas (37.96 mL gincubated DM-1) and the lowest final pH value (4.95) were obtained for crude glycerin (P < 0.05), which, however, exhibited the highest (P < 0.05) DM degradation. Citrus pulp produced the largest amount (P < 0.05) of CH4 per gram of incubated DM (13.56 mL g-1). However, when methane production was expressed per gram of degraded feed, the ingredients with lower degradation values, such as soybean hulls and corn silage, produced more CH4 per gram of degraded DM. Citrus pulp and corn grain produced more (P < 0.05) CO2 per gram of incubated DM. However, per gram of degraded food, citrus pulp produced the largest amount of CO2 (P < 0.05). Crude glycerin and corn grain produced less methane (per gram of degraded feed) than citrus pulp, soybean hulls, and corn silage. Differentiation of ingredients based on their methane production ability is important to express methane production per unit degraded food mass.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 427-427
Author(s):  
S Richard Goodall ◽  
Arquimides Reyes ◽  
Octavio Guimaraes ◽  
Keith Belk ◽  
Terry E Engle

Abstract Rumen fluid from fistulated steers receiving a high concentrate diet was utilized to examine the impact of polyphenols and saponin with or without a direct fed microbial (DFM) on in vitro fermentation characteristics. Treatments consisted of: Control (no polyphenols, saponin or DFM); 2) Polyphenols (Mixed Tannins = 15 g/hd/d); 3) Saponin (Y. schidigera = 2 g/hd/d); 4) Polyphenols + DFM (DFM = 1E+7 Lactobacillus animalis + 1E+8 Propionibacteria acidilactici cfu/hd/d); and 5) Saponin + DFM. Rumen fluid was collected and combined in equal amounts from 3 rumen fistulated steers and mixed at a 1:1 ratio of artificial saliva to rumen fluid. Fermentation substrate consisted of 0.5 g of the high concentrate diet. Fermentation bottles were capped with an air-tight rubber stopper and incubated in a water bath for 12 and 18h (7 replicates/treatment/time point). After incubation, the total volume of gas produced was measured and a subsample analyzed for N, CH4 and CO2 concentrations. After gas sampling, pH, VFA concentrations, and DMD were determined. In vitro fermentation parameters were analyzed using a mixed effects model repeated measures analysis for a completely randomized block design. Acetic acid was decreased while valeric acid was increased (P &lt; 0.05) by the Saponin + DFM treatment vs. Control. At 12h DMD was greater in Saponin, Saponin + DFM and Polyphenols + DFM (P &lt; 0.001) treatments compared to Control or Polyphenols alone. Polyphenols produced greater amounts of CH4 /DMD than all other treatments (P &lt; 0.01). Microbial protein production and efficiency were greater (P &lt; 0.001), Saponin + DFM compared to other treatments. Other fermentation parameters measured were not impacted by treatments. Under the conditions of this experiment these data suggest combining DFM with Saponin or Polyphenols produces different ruminal effects from when they are fed alone.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Yichong Wang ◽  
Sijiong Yu ◽  
Yang Li ◽  
Shuang Zhang ◽  
Xiaolong Qi ◽  
...  

Nutritional strategies can be employed to mitigate greenhouse emissions from ruminants. This article investigates the effects of polyphenols extracted from the involucres of Castanea mollissima Blume (PICB) on in vitro rumen fermentation. Three healthy Angus bulls (350 ± 50 kg), with permanent rumen fistula, were used as the donors of rumen fluids. A basic diet was supplemented with five doses of PICB (0%–0.5% dry matter (DM)), replicated thrice for each dose. Volatile fatty acids (VFAs), ammonia nitrogen concentration (NH3-N), and methane (CH4) yield were measured after 24 h of in vitro fermentation, and gas production was monitored for 96 h. The trial was carried out over three runs. The results showed that the addition of PICB significantly reduced NH3-N (p < 0.05) compared to control. The 0.1%–0.4% PICB significantly decreased acetic acid content (p < 0.05). Addition of 0.2% and 0.3% PICB significantly increased the propionic acid content (p < 0.05) and reduced the acetic acid/propionic acid ratio, CH4 content, and yield (p < 0.05). A highly significant quadratic response was shown, with increasing PICB levels for all the parameters abovementioned (p < 0.01). The increases in PICB concentration resulted in a highly significant linear and quadratic response by 96-h dynamic fermentation parameters (p < 0.01). Our results indicate that 0.2% PICB had the best effect on in-vitro rumen fermentation efficiency and reduced greenhouse gas production.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 182-182
Author(s):  
Marjorie A Killerby ◽  
Diego Zamudio ◽  
Kaycee Ames ◽  
Darren D Henry ◽  
Thomas Schwartz ◽  
...  

Abstract This study evaluated the effects of preservatives on the in vitro fermentation measures of wet brewer’s grain (WBG) silage at different stages of storage. Treatments (TRT) were sodium lignosulfonate at 1% (NaL1) and 2% (NaL2; w/w of fresh WBG), propionic acid (PRP; 0.5% w/w of fresh WBG), a combination inoculant (INO; Lactococcus lactis and Lactobacillus buchneri each at 4.9 log cfu/fresh WBG g), and untreated WBG (CON). WBG (Fresh) were packed into 8.8 L mini-silos and stored for 60 d at 21°C (Ensiled), then they were opened and aerobically exposed for 10d (AES). Samples from each stage of storage (STG; Fresh, Ensiled and AES) were analyzed for in vitro ruminal digestibility (24 h).Gas kinetics were recorded using the Ankom RF Gas Production System. Data were analyzed as a randomized complete block design (5 blocks) with a 5 (TRT) × 3 (STG) factorial arrangement. Apparent in vitro DM digestibility (DMD) decreased across STG, (51.5, 47.2 and 40.9 for Fresh, Ensiled and AES, respectively) and increased for NaL1, NaL2 and PRP (~47.8) vs. CON (43.0 ± 2.12%). PRP increased apparent in vitro OM digestibility (OMD) when Ensiled (54.5) and NaL2 increased it for AES (47.1) vs CON (46.3 and 39.9 ± 1.73%, respectively). The asymptotic maximal (M) and rate (k) of gas production decreased across STG (214.6, 181.5, 155.1 and 14.6, 12.6, and 9.8, for Fresh, Ensiled and AES, respectively). PRP increased (200.0) and NaL1 decreased (169.3) M vs. CON (183.9± 7.81ml/incubated DM g), while NaL1 and NaL2 (~11.4) decreased k vs. CON (13.4 ± 0.85%/h). Methane concentration and yield were higher in Fresh vs. other STG (0.94 vs. ~0.84 ± 0.07mM and 0.27 vs. ~0.23 ± 0.03mmol/g fermented OM). Spoilage of WBG decreases fermentability and methane production while PRP and NaL improve digestibility with the former also increasing M and k.


1997 ◽  
Vol 1997 ◽  
pp. 196-196
Author(s):  
S. Fakhri ◽  
A. R. Moss ◽  
D.I. Givens ◽  
E. Owen

Recently, the automatic in vitro gas production techniques (e.g. Cone. 1994; Theodorou et al., 1994) have been developed to study rumen fermentation kinetics. Many approaches have been taken. This work investigates the suitability of different methods for estimating the rumen fermentation of two starch rich feedstuffs.


2020 ◽  
Vol 18 (2) ◽  
pp. 191
Author(s):  
Muchamad Muchlas ◽  
Siti Chuzaemi ◽  
Mashudi Mashudi

<p class="MDPI17abstract"><strong>Objective: </strong>The purpose of this research was to evaluate the effect supplementation of mimosa powder as a source of condensed tannins and a single fatty acid, myristic acid, in a complete feed based on corn stover (<em>Zea mays</em>) using the in-vitro gas production method. This research has been carried out at the Animal Nutrition and Food Laboratory, Faculty of Animal Husbandry, Brawijaya University. The time of the research was conducted in August until December 2019.</p><p class="MDPI17abstract"><strong>Methods: </strong>The experimental design used randomized complete block design by ANOVA consisting four treatments and three replications which were P1= a complete feed based on corn stover (<em>Zea mays</em>) as control Diet (CD) (40% corn stover + 60 % concentrate), P2= (CD) + Mimosa Powder(MP) 1.5 %/kg DM + myristic acid (MA)2% /kg DM, P3= CD + MP 1.5 % /kg DM + MA 3% /kg DM, and P4= CD + MP 1.5 %/kg DM + MA 4 %/kg DM.</p><p class="MDPI17abstract"><strong>Results: </strong>The results showed that the treatments affected total gas production (p&lt;0.01). The highest value for total gas production was found in P1 (86.67 ml/500 mg DM) and the lowest was found in P3 (73.30 ml/500 mg DM). The results showed that gas production decreased concurrently with the increase of MA level. In vitro methane gas and carbon dioxide production was showed different (p&lt;0.05) from the control treatment. The lowest concentration of methane production was in P4 (82863.07 ppm) and the highest concentration was in treatment P1 86530.89 ppm. The highest total carbon dioxide content was P1 (436711.57 ppm) and the lowest concentration was P3 (350287.72 ppm).</p><p class="MDPI17abstract"><strong>Conclusions: </strong>The results of the research concluded that the addition of mimosa powder and 3 different levels of myristic acid in a complete feed based on corn stover can increase the nutritional value of a complete feed and reduce the production of methane gas.</p>


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 165-165
Author(s):  
Nadira J Espinoza-Rock ◽  
Andrea O Doblado ◽  
Sebastian E Mejia-Turcios ◽  
Evandro Dias ◽  
Michael Sandes ◽  
...  

Abstract A randomized complete block design was used to determine the effects of 4 concentrations of 4 essential oils (EO) on in vitro ruminal fermentation variables. In vitro fermentation consisted of 0.7 g of high concentrate substrate (86.7% DM) and 50 mL of 2:1 buffer:ruminal fluid inoculum incubated for 24 h for each batch (n = 3; separate days) Treatments were arranged as a 4 × 5 factorial. Factors included 4 EO (eugenol, cinnamic aldehyde, anethole, and garlic oil) at 5 concentrations (0, 10, 75, 200, and 400 mg/L of inoculum). Data were analyzed using the MIXED procedure of SAS with the fixed effects of EO, concentration, and their interaction, and random effect of day (block). Batch was considered the experimental unit. There was an interaction (P &lt; 0.001) for total gas production, where a cubic effect (P ≤ 0.041) was observed for eugenol, cinnamic aldehyde, and anethole, and a quadratic effect (P = 0.001) was observed for garlic oil. No interactions (P &gt; 0.05) were observed for in vitro OM digestibility (IVOMD) or CH4 production. There was an effect of EO (P &lt; 0.001) on IVOMD, where eugenol reduced (P ≤ 0.007) digestibility compared with anethole and garlic oil, which promoted the greatest (P ≤ 0.029) IVOMD. Methane production (mmol/g OM fermented) was affected by EO (P &lt; 0.001), where it was decreased (P ≤ 0.001) by garlic oil compared with all other EO. There was an interaction (P &lt; 0.001) for H2S production (µmol/g OM fermented), where it was linearly decreased (P = 0.003) and linearly increased (P &lt; 0.001) as concentrations of eugenol and garlic oil increased, respectively. These EO had contradictory impacts on in vitro ruminal fermentation, thus combining them could potentially improve multiple aspects of in vitro and in vivo fermentation.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 635 ◽  
Author(s):  
Ives C. S. Bueno ◽  
Roberta A. Brandi ◽  
Gisele M. Fagundes ◽  
Gabriela Benetel ◽  
James Pierre Muir

Animal feeding behavior and diet composition determine rumen fermentation responses and its microbial characteristics. This study aimed to evaluate the rumen fermentation kinetics of domestic ruminants feeding diets with or without condensed tannins (CT). Holstein dairy cows, Nelore beef cattle, Mediterranean water buffalo, Santa Inês sheep and Saanen goats were used as inoculum donors (three animals of each species). The substrates were maize silage (Zea mays), fresh elephant grass (Pennisetum purpureum), Tifton-85 hay (Cynodon spp.) and fresh alfalfa (Medicago sativa). Acacia (Acacia molissima) extract was used as the external CT source. The in vitro semi-automated gas production technique was used to assess the fermentation kinetics. The experimental design was completely randomized with five inoculum sources (animal species), four substrates (feeds) and two treatments (with or without extract). The inclusion of CT caused more severe effects in grazing ruminants than selector ruminants.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 290-291
Author(s):  
Paul Tamayao ◽  
Kim Ominski ◽  
Gabriel Ribeiro ◽  
Emma McGeough

Abstract This in vitro study evaluated seven different engineered biocarbon products supplied at three levels (0.5, 1.5 and 2.5 mg/ml inoculum) to determine their effects on total gas, methane production, and fermentation parameters when added to a barley silage-based diet. The biocarbon sources were derived from either coconut (CP001 and CP014) or pine (CP002, CP015, CP016, CP023, CP024) and differed in their physical properties and chemical composition. The coconut biocarbon sources were lower in pore space, particle size distribution and surface area but higher in bulk density than the pine products. The control consisted of only the barley-silage diet. The in vitro batch culture jars were incubated for 24 h at 39°C at the above inclusion levels in 0.5 g of diet. Gas samples were collected at 3, 6, 9, 12, 18 and 24 h and DM disappearance, pH, VFA and ammonia concentrations post incubation were measured. Data were analysed using the PROC MIXED in SAS as a randomized complete block design with treatment and rate as fixed effects and run and replicate as random effects. Total gas production was not affected by source of biocarbon (P = 0.85) and inclusion rate (P = 0.91). Cumulative methane (ml/g DM) had no response to biocarbon addition (P = 0.40) at any inclusion level (P = 0.48). Additionally, concentration of total VFA was not affected by treatment (P = 0.31) or inclusion rates (P = 0.25). NH3-N concentrations responded quadratically (P &lt; 0.001) to all types of biocarbon. Higher inclusion rates of biocarbon linearly (P &lt; 0.002) decreased feed digestibility, particularly the coconut-based biocarbon sources CP001 and CP014. In conclusion, supplementation of biocarbon to a TMR diet did not reduce methane emissions, but at higher levels of inclusion diet digestibility was negatively affected.


Sign in / Sign up

Export Citation Format

Share Document