scholarly journals Physiologically-induced adipocyte browning

2018 ◽  
Vol 72 ◽  
pp. 499-511
Author(s):  
Oskar Wojciech Wiśniewski ◽  
Malwina Malinowska ◽  
Magdalena Gibas-Dorna

The data consistently suggests that expansion and activation of beige/brite adipose tissue may possibly serve as a novel cure for obesity and obesity-related complications. Interestingly, besides well-known agents affecting adipocyte transformation, such as cold-induced sympathetic stimulation, the vast majority of biological systems (e.g. cardiovascular, endocrine, immune, musculoskeletal and central nervous system) also play a role in an adipose tissue modelling and maintaining energy homeostasis. Therefore, we decided to describe in detail the browning of the adipose tissue with a wide range of physiological factors associated with this process and to present the significant distinctions between “classical” brown and beige/brite adipocytes. Here, we review the current state of knowledge about browning phenomenon with regard to obesity prevention and/or management.

Open Biology ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 210080
Author(s):  
Tasha R. Davis ◽  
Mariah R. Pierce ◽  
Sadie X. Novak ◽  
James L. Hougland

The acylated peptide hormone ghrelin impacts a wide range of physiological processes but is most well known for controlling hunger and metabolic regulation. Ghrelin requires a unique posttranslational modification, serine octanoylation, to bind and activate signalling through its cognate GHS-R1a receptor. Ghrelin acylation is catalysed by ghrelin O -acyltransferase (GOAT), a member of the membrane-bound O -acyltransferase (MBOAT) enzyme family. The ghrelin/GOAT/GHS-R1a system is defined by multiple unique aspects within both protein biochemistry and endocrinology. Ghrelin serves as the only substrate for GOAT within the human proteome and, among the multiple hormones involved in energy homeostasis and metabolism such as insulin and leptin, acts as the only known hormone in circulation that directly stimulates appetite and hunger signalling. Advances in GOAT enzymology, structural modelling and inhibitor development have revolutionized our understanding of this enzyme and offered new tools for investigating ghrelin signalling at the molecular and organismal levels. In this review, we briefly summarize the current state of knowledge regarding ghrelin signalling and ghrelin/GOAT enzymology, discuss the GOAT structural model in the context of recently reported MBOAT enzyme superfamily member structures, and highlight the growing complement of GOAT inhibitors that offer options for both ghrelin signalling studies and therapeutic applications.


2020 ◽  
Vol 74 ◽  
pp. 489-497
Author(s):  
Grażyna Sygitowicz ◽  
Dariusz Sitkiewicz

The sirtuins are a family of highly evolutionary conserved NAD+-dependent deacetylases (SIRT1, 2, 3, 5). Certain human sirtuins (SIRT4, 6) have, in addition, an ADP-ribosyltransferase activity. SIRT1 and SIRT2 are located in the nucleus and cytoplasm; SIRT3 exists predominantly in mitochondria, and SIRT6 is located in the nucleus. The mammalian sirtuins have emerged as key metabolic sensors that directly link environmental nutrient signals to metabolic homeostasis. SIRT1 is involved in the regulation of gluconeogenesis and fatty acid oxidation, as well as inhibiting lipogenesis and inflammation in the liver. In addition, they contribute to the mobilization of fat in white adipose tissue, sense nutrient availability in the hypothalamus; regulate insulin secretion in the pancreas; as well as modulating the expression of genes responsible for the activity of the circadian clock in metabolic tissues. Sirtuins are implicated in a variety of cellular functions ranging from gene silencing, through the control of the cell cycle, to energy homeostasis. Caloric restriction, supported by polyphenols, including resveratrol, which is the SIRT1 activator, plays a special role in maintaining energy homeostasis. On a whole body level, the wide range of cellular activities of the sirtuins suggests that they could constitute a therapeutic target to combat obesity and related metabolic diseases. In addition, this work presents the current state of knowledge in the field of sirtuin activity in relation to nutritional status and lifespan.


2021 ◽  
Vol 8 (1) ◽  
pp. 17-26
Author(s):  
Elisabeta Malinici ◽  
Anca Sirbu ◽  
Miruna Popa ◽  
Simona Fica

Over the past years, bone and adipose tissue have gained interest from researchers in the light of their secretory profiles, being able to produce active molecules, with the final effect of regulating energy homeostasis. Both adipocytes and osteoblasts originate in the pluripotent mesenchymal stem cell and this common origin has been proposed as the core of the fat-bone relationship. The central nervous system might be the third player in this association, capable of integrating signals. Numerous adipose tissue secreted factors that influence energy homeostasis and bone have been described: leptin, adiponectin, lipocalin 2, and inflammatory cytokines (e.g. IL-1, IL-6 and TNF-α). Similarly, osteocalcin, the most abundant bone protein, has been shown to elicit numerous central and peripheral endocrine functions. In this paper, we provide a review of the current literature regarding the bone-adipose tissue-central nervous system axis and a brief description of the several underlying molecular mechanisms.


2019 ◽  
Vol 14 (1-2) ◽  
pp. 295-297
Author(s):  
Sergej A. Borisov

For more than twenty years, the Institute of Slavic Studies of the Russian Academy of Sciences celebrates the Day of Slavic Writing and Culture with a traditional scholarly conference.”. Since 2014, it has been held in the young scholars’ format. In 2019, participants from Moscow, St. Petersburg, Kazan, Togliatti, Tyumen, Yekaterinburg, and Rostov-on-Don, as well as Slovakia, the Czech Republic, Hungary, and Romania continued this tradition. A wide range of problems related to the history of the Slavic peoples from the Middle Ages to the present time in the national, regional and international context were discussed again. Participants talked about the typology of Slavic languages and dialects, linguo-geography, socio- and ethnolinguistics, analyzed formation, development, current state, and prospects of Slavic literatures, etc.


2019 ◽  
Vol 72 (8) ◽  
pp. 1437-1441
Author(s):  
Pavel Dyachenko ◽  
Igor Filchakov ◽  
Anatoly Dyachenko ◽  
Victoria Kurhanskaya

Introduction: Viral encephalitis accounts for 40-70% of all cases worldwide, central nervous system infections pose a diagnostic challenge because clinical manifestations are not typically pathognomonic for specific pathogens, and a wide range of agents can be causative. The aim: To assess the diagnostic value of intrathecal synthesis of specific antibodies in patients with inflammatory lesions of the central nervous system. Materials and methods: Within the framework of the study, two groups of 90 people in each were formed from the patients with neuroinfections admitted to our Center. Intrathecal synthesis (ITS) of total (unspecific) IgG in members of one of group (group of compare) was determined. Brain synthesis of specific antibodies (Ab) to some neurotropic pathogens (herpes simplex virus 1/2, cytomegalovirus, Epstein-Barr virus, varicella zoster virus, rubella virus, Borrelies) was studied in the second group of patients (group of interest). There were no statistically significant differences between groups by gender and age. Encephalitis and encephalomyelitis prevailed among patients of both groups Results: ITS of total IgG was established in 30 (33.3 ± 6.1 %) patients of the first group with IgG index more than 0.6 indicating on inflammatory process in CNS and no marked changes of CSF. ITS of specific Ab was determined in 23 of 90 (25.6 ± 4.6 %) patients included into group of interest. In more than half of cases Ab to several infectious agents were detected simultaneously. ITS of various specificity, in particular, to measles and rubella viruses, and VZV, known as MRZ-reaction, is characteristic of some autoimmune lesions of CNS, multiple sclerosis first of all. In fact, further research of 5 patients with MRZ-reaction confirmed their autoimmune failure of CNS. Detection of ITS in the CSF samples didn’t depend on concentration of specific Ab in serum and CSF and wasn’t followed by HEB dysfunctions which were observed with the same frequency in patients with or without ITS (13.0 % and 13.6 % respectively). Conclusion: Specific Ab synthesis to several neurotropic pathogens in the CSF of significant part of examined patients was established. Thus, diagnostic value of ITS of specific immunoglobulins seems to be limited to cases in which autoimmune damage of the CNS is suspected.


2019 ◽  
Vol 20 (6) ◽  
pp. 614-629 ◽  
Author(s):  
Eglantina Idrizaj ◽  
Rachele Garella ◽  
Roberta Squecco ◽  
Maria Caterina Baccari

The present review focuses on adipocytes-released peptides known to be involved in the control of gastrointestinal motility, acting both centrally and peripherally. Thus, four peptides have been taken into account: leptin, adiponectin, nesfatin-1, and apelin. The discussion of the related physiological or pathophysiological roles, based on the most recent findings, is intended to underlie the close interactions among adipose tissue, central nervous system, and gastrointestinal tract. The better understanding of this complex network, as gastrointestinal motor responses represent peripheral signals involved in the regulation of food intake through the gut-brain axis, may also furnish a cue for the development of either novel therapeutic approaches in the treatment of obesity and eating disorders or potential diagnostic tools.


2017 ◽  
Vol 9 (2) ◽  
pp. 93-98 ◽  
Author(s):  
Celeste T. Tipple ◽  
Sarah Benson ◽  
Andrew Scholey

2021 ◽  
pp. 152483802098556
Author(s):  
Logan Knight ◽  
Yitong Xin ◽  
Cecilia Mengo

Resilience is critical among survivors of trafficking as they are mostly vulnerable populations who face multiple adversities before, during, and after trafficking. However, resilience in survivors of trafficking is understudied. This scoping review aims to clarify the current state of knowledge, focusing on definitions of resilience, how resilience has been studied, and factors associated with resilience among survivors. Five databases were searched using key words related to trafficking and resilience. Studies were included if they were published in English between 2000 and 2019 and focused on resilience with the study design including at least one of these four features: (a) use of standardized measures of resilience, (b) qualitative descriptions of resilience, (c) participants were survivors or professionals serving survivors, and (d) data sources such as case files or program manuals directly pertained to survivors. Eighteen studies were identified. Findings indicated that resilience was primarily described as emergent from interactions between the survivor and the environment. Resilience in trafficking appeared largely similar to resilience in other kinds of victimization. Nonetheless, trafficking survivors also may display resilience in alternative ways such as refusing treatment. Positive interpersonal relationships were the most commonly mentioned resilience factor. In addition, current research lacks studies featuring longitudinal designs, interventions, participatory methods, types of trafficking other than sexual trafficking, and demographic characteristics such as age, gender, and national origin. Future research needs to establish definitions and measures of resilience that are culturally and contextually relevant to survivors and build knowledge necessary for designing and evaluating resilience-enhancing interventions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haiyan Zhou ◽  
Xinyi Peng ◽  
Jie Hu ◽  
Liwen Wang ◽  
Hairong Luo ◽  
...  

AbstractAdipose tissue-resident T cells have been recognized as a critical regulator of thermogenesis and energy expenditure, yet the underlying mechanisms remain unclear. Here, we show that high-fat diet (HFD) feeding greatly suppresses the expression of disulfide-bond A oxidoreductase-like protein (DsbA-L), a mitochondria-localized chaperone protein, in adipose-resident T cells, which correlates with reduced T cell mitochondrial function. T cell-specific knockout of DsbA-L enhances diet-induced thermogenesis in brown adipose tissue (BAT) and protects mice from HFD-induced obesity, hepatosteatosis, and insulin resistance. Mechanistically, DsbA-L deficiency in T cells reduces IFN-γ production and activates protein kinase A by reducing phosphodiesterase-4D expression, leading to increased BAT thermogenesis. Taken together, our study uncovers a mechanism by which T cells communicate with brown adipocytes to regulate BAT thermogenesis and whole-body energy homeostasis. Our findings highlight a therapeutic potential of targeting T cells for the treatment of over nutrition-induced obesity and its associated metabolic diseases.


2021 ◽  
Vol 5 (1) ◽  
pp. 14
Author(s):  
Georgi G. Gochev ◽  
Volodymyr I. Kovalchuk ◽  
Eugene V. Aksenenko ◽  
Valentin B. Fainerman ◽  
Reinhard Miller

The theoretical description of the adsorption of proteins at liquid/fluid interfaces suffers from the inapplicability of classical formalisms, which soundly calls for the development of more complicated adsorption models. A Frumkin-type thermodynamic 2-d solution model that accounts for nonidealities of interface enthalpy and entropy was proposed about two decades ago and has been continuously developed in the course of comparisons with experimental data. In a previous paper we investigated the adsorption of the globular protein β-lactoglobulin at the water/air interface and used such a model to analyze the experimental isotherms of the surface pressure, Π(c), and the frequency-, f-, dependent surface dilational viscoelasticity modulus, E(c)f, in a wide range of protein concentrations, c, and at pH 7. However, the best fit between theory and experiment proposed in that paper appeared incompatible with new data on the surface excess, Γ, obtained from direct measurements with neutron reflectometry. Therefore, in this work, the same model is simultaneously applied to a larger set of experimental dependences, e.g., Π(c), Γ(c), E(Π)f, etc., with E-values measured strictly in the linear viscoelasticity regime. Despite this ambitious complication, a best global fit was elaborated using a single set of parameter values, which well describes all experimental dependencies, thus corroborating the validity of the chosen thermodynamic model. Furthermore, we applied the model in the same manner to experimental results obtained at pH 3 and pH 5 in order to explain the well-pronounced effect of pH on the interfacial behavior of β-lactoglobulin. The results revealed that the propensity of β-lactoglobulin globules to unfold upon adsorption and stretch at the interface decreases in the order pH 3 > pH 7 > pH 5, i.e., with decreasing protein net charge. Finally, we discuss advantages and limitations in the current state of the model.


Sign in / Sign up

Export Citation Format

Share Document