scholarly journals POLYMER CONCRETE MIXTURES – APPLICATION IN ENGINEERING INDUSTRY

STED JOURNAL ◽  
2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Robert Poklemba ◽  
Jozef Zajac ◽  
Darina Duplakova ◽  
Peter Cizmar ◽  
David Goldyniak

This article discusses the properties of concrete composite materials based on their contexture. Systematic and interactive approaches are required in order to achieve optimal material properties in the preparation of composite materials. In order to predict the physical and mechanical properties of each component of the composite material but also as a whole, its optimization, not only the mechanical but also the material properties under different working conditions, requires a combination of different methods and technologies. The advantage of each composite is its specific properties that cannot be achieved by any component of the composite material alone. The strength of the materials based on polymer concrete mixtures can be compared to the strength properties of metals. On the other hand, this material has elastic properties which give the material a high degree of flexibility. When compared to conventional materials, the value of polymer composites is assessed not only in terms of excellent mechanical properties but also in terms of their low weight and cost. The aim of the paper is to describe the advantages and disadvantages of composites based on polymer concrete mixtures.

Author(s):  
I Sheka ◽  
Ye Tsivka

Purpose. To analyze composite materials and prospects of their use as fastening materials for mining of coal mines.Perform a comparative analysis of the physical and mechanical properties of the innovative material carbon fiber and metallic materials, as well as compare their features. To determine the possibility of using carbon fiber as a fastening material for mining of coal mines. Research methodology. The generalization of physical and mechanical properties of carbon fiber on the basis of its analysis is performed. The features of mechanical properties of carbon fiber, steel and aluminum are compared, which showed that this composite material has the best physical and mechanical properties and it is expedient to use it in the fastening elements of mine workings. Research results. The areas of use of composite materials in industry are analyzed and generalized, and it is concluded that it is better to use carbon fiber as a fastening material for coal mine workings. A comparative analysis of the physical and mechanical properties of carbon fiber and steel is performed, which shows that this composite material has identical (and sometimes even better) properties as metallic materials. The advantages and disadvantages of carbon fiber as a fastening material for mining of coal mines are estimated. It is specified that the restraining factor, today, is the cost of carbon fiber, and later their price will decrease and demand will increase. It is concluded that when using this composite material in the fasteners of mine workings, it is possible to increase the pace of their implementation, reduce the complexity of the work performed and improve working conditions while facilitating the design. Scientific novelty. It is established that carbon fiber as a composite material can be used in the fastening elements of the preparatory workings of coal mines. Practical value. According to the results of the analysis, it is established that carbon plastics can be used in the fastening elements of mine workings, which will promote the development of underground coal mining.


2020 ◽  
pp. 26-29
Author(s):  
Y. M. Yevtushenko ◽  
Y. A. Grigoriev ◽  
I. O. Kuchkina ◽  
E. V. Afoshina ◽  
G. A. Krushevsky

A brief review of the results of studies on reducing the combustibility of composite materials based on unsaturated polyester resins is presented. A flame retardant orthophthalic unsaturated resin based on a complex flame retardant was developed and studied. It is shown that the category for resistance to burning of the resin is achieved with 15–20% filling of the complex flame retardant based on ammonium polyphosphate, melamine and pentaerythritol. The kinetics of curing and physical and mechanical properties of the composite material are evaluated.


2021 ◽  
pp. 28-34
Author(s):  
E. A. Kosenko ◽  
◽  
P. E. Demin ◽  

The mechanical properties of polymer composite materials largely depend on the interfacial phenomena occurring on the interface between the matrix and reinforcing material. The addition of components to the matrix of polymer composite materials that retain their viscoelastic state during the molding process of the products makes possible to locally change the deformation-and-strength properties of a finished product, adapting it to the specified operating conditions. The viscoelastic components in the hybrid matrix form the third phase of the polymer composite material. Increasing the efficiency of interfacial layers of polymer composite materials with various types of hybrid matrices is the most important task of their development. The samples for microanalysis of the polymer composite material structure with various types of hybrid matrices were molded using the prepreg technology by vacuum molding on the basis of BT400 biaxial basalt fabric. Technical wax, anaerobic (Loctite 638) and organosilicon (Yunisil-9628) polymer materials were selected as the viscoelastic components of the hybrid matrix. In order to explain the reasons for the change in the deformation-and-strength properties of the obtained basalt plastics with various viscoelastic components in the composition of the hybrid matrix, microanalysis of their structure was carried out. A mechanism for choosing a scheme for the location of viscoelastic components in a matrix of polymer composite materials based on the provisions of combinatorial optimization is described.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1369
Author(s):  
Sanjeev Kumar ◽  
Lalta Prasad ◽  
Vinay Kumar Patel ◽  
Virendra Kumar ◽  
Anil Kumar ◽  
...  

In recent times, demand for light weight and high strength materials fabricated from natural fibres has increased tremendously. The use of natural fibres has rapidly increased due to their high availability, low density, and renewable capability over synthetic fibre. Natural leaf fibres are easy to extract from the plant (retting process is easy), which offers high stiffness, less energy consumption, less health risk, environment friendly, and better insulation property than the synthetic fibre-based composite. Natural leaf fibre composites have low machining wear with low cost and excellent performance in engineering applications, and hence established as superior reinforcing materials compared to other plant fibres. In this review, the physical and mechanical properties of different natural leaf fibre-based composites are addressed. The influences of fibre loading and fibre length on mechanical properties are discussed for different matrices-based composite materials. The surface modifications of natural fibre also play a crucial role in improving physical and mechanical properties regarding composite materials due to improved fibre/matrix adhesion. Additionally, the present review also deals with the effect of silane-treated leaf fibre-reinforced thermoset composite, which play an important role in enhancing the mechanical and physical properties of the composites.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 145
Author(s):  
Lesław Kyzioł ◽  
Katarzyna Panasiuk ◽  
Grzegorz Hajdukiewicz ◽  
Krzysztof Dudzik

Due to the unique properties of polymer composites, these materials are used in many industries, including shipbuilding (hulls of boats, yachts, motorboats, cutters, ship and cooling doors, pontoons and floats, torpedo tubes and missiles, protective shields, antenna masts, radar shields, and antennas, etc.). Modern measurement methods and tools allow to determine the properties of the composite material, already during its design. The article presents the use of the method of acoustic emission and Kolmogorov-Sinai (K-S) metric entropy to determine the mechanical properties of composites. The tested materials were polyester-glass laminate without additives and with a 10% content of polyester-glass waste. The changes taking place in the composite material during loading were visualized using a piezoelectric sensor used in the acoustic emission method. Thanks to the analysis of the RMS parameter (root mean square of the acoustic emission signal), it is possible to determine the range of stresses at which significant changes occur in the material in terms of its use as a construction material. In the K-S entropy method, an important measuring tool is the extensometer, namely the displacement sensor built into it. The results obtained during the static tensile test with the use of an extensometer allow them to be used to calculate the K-S metric entropy. Many materials, including composite materials, do not have a yield point. In principle, there are no methods for determining the transition of a material from elastic to plastic phase. The authors showed that, with the use of a modern testing machine and very high-quality instrumentation to record measurement data using the Kolmogorov-Sinai (K-S) metric entropy method and the acoustic emission (AE) method, it is possible to determine the material transition from elastic to plastic phase. Determining the yield strength of composite materials is extremely important information when designing a structure.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4284
Author(s):  
Lvtao Zhu ◽  
Mahfuz Bin Rahman ◽  
Zhenxing Wang

Three-dimensional integrated woven spacer sandwich composites have been widely used as industrial textiles for many applications due to their superior physical and mechanical properties. In this research, 3D integrated woven spacer sandwich composites of five different specifications were produced, and the mechanical properties and performance were investigated under different load conditions. XR-CT (X-ray computed tomography) images were employed to visualize the microstructural details and analyze the fracture morphologies of fractured specimens under different load conditions. In addition, the effects of warp and weft direction, face sheet thickness, and core pile height on the mechanical properties and performance of the composite materials were analyzed. This investigation can provide significant guidance to help determine the structure of composite materials and design new products according to the required mechanical properties.


2012 ◽  
Vol 496 ◽  
pp. 281-284
Author(s):  
Wen Wen Liu ◽  
Zhi Wang ◽  
Yun Hai Du ◽  
Xian Zhong Xu ◽  
Da Quan Liu ◽  
...  

An improved accurate speckle projection method is used for study the mechanical properties of the composite material film in the paper. A system for deformation measurement is developed with the telecentric lenses, in which such conventional lens’ disadvantages such as lens distortion and perspective error will be diminished. Experiments are performed to validate the availability and reliability of the calibration method. The system can also be used to measure the dynamic deformation and then results are also given.


2021 ◽  
Vol 887 ◽  
pp. 110-115
Author(s):  
G.A. Sabirova ◽  
R.R. Safin ◽  
N.R. Galyavetdinov

This paper presents the findings of experimental studies of the physical and mechanical properties of wood-filled composites based on polylactide (PLA) and vegetable filler in the form of wood flour (WF) thermally modified at 200-240 °C. It also reveals the dependence of the tensile strength, impact strength, bending elastic modulus, and density of composites on the amount of wood filler and the temperature of its thermal pre-modification. We established that an increase in the concentration of the introduced filler and the degree of its heat treatment results in a decrease of the tensile strength, impact strength and density of composite materials, while with a lower binder content, thermal modification at 200 °C has a positive effect on bending elastic modulus. We also found that 40 % content of a wood filler heated to 200 °C is sufficient to maintain relatively high physical and mechanical properties of composite materials. With a higher content of a wood filler, the cost can be reduced but the quality of products made of this material may significantly deteriorate. However, depending on the application and the life cycle of this product, it is possible to develop a formulation that includes a high concentration of filler.


2018 ◽  
Vol 212 ◽  
pp. 01013
Author(s):  
Vadim Balabanov ◽  
Victor Baryshok ◽  
Nikita Epishkin

The sharply continental climate of the Irkutsk region is characterized by wide temperature intervals throughout the year. The repeated cyclicity of freezing and thawing of building materials in the water-saturated state influences the change in technical characteristics and the durability of concrete products and structures. The concrete products’ features in such climatic conditions create the need for the production of concretes with improved indicators of physical and mechanical properties. The effect of modifying additives on the technological characteristics of sulfur concrete is established. The effect of all elements of sulfur concrete on its strength and frost resistance. The composition of sulfuric concrete is obtained, which meets all the requirements and also has high strength and increased frost resistance. Formulations with a certain ratio of structural sulfuric concrete mixtures were developed. As a result of the use of technical sulfur in the composition of concrete products, the problem of utilizing annually accumulating reserves of technical sulfur is partially solved. The strength properties of sulfuric concretes easily compete with high-quality brands of concrete, special types of concretes that have in their composition additives.


Sign in / Sign up

Export Citation Format

Share Document