scholarly journals Resident microbes of lactation rooms and daycares

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8168
Author(s):  
Diana H. Taft ◽  
Samir Akre ◽  
Nicolas Madrid ◽  
Andre Knoesen ◽  
David A. Mills ◽  
...  

Dedicated lactation rooms are a modern development as mothers return to work while still providing breastmilk to their absent infants. This study describes the built environment microbiome of lactation rooms and daycares, and explores the influence of temperature and humidity on the microbiome of lactation rooms. Sterile swabs were used to collect samples from five different sites in lactation rooms at University of California, Davis and from five different sites in daycares located in Davis, California. DNA from the swabs was extracted and the V4 region of the 16S rRNA gene was sequenced using Illumina MiSeq. Temperature and relative humidity data were collected on a subset of the lactation rooms. Sampled lactation rooms could be either dedicated lactation rooms or could also serve other functions (e.g., combined lactation room and restroom lounge). The majority of sequence reads were identified as belonging to family Moraxellaceae, with 73% of all reads included in analysis identified as an unknown species of Acinetobacter. Alpha diversity was analyzed using the Shannon index, while beta diversity was analyzed using unweighted and weighted UniFrac distance. The Jaccard distance was used to measure amount of change at sampling locations between time points for analysis of the impact of temperature and humidity on the microbiome. There were significant differences in the beta diversity of the microbiome of lactation rooms by room type. There were also significant differences in the beta diversity of the microbiome by sample collection location. There were no significant differences in either alpha or beta diversity associated with room temperature or humidity. Additional studies are needed to understand if the differences in lactation room type may result in differences in the breastmilk microbiome of milk collected in those rooms, and to what extent any such differences may influence the infant microbiome.

Author(s):  
Maciej Chichlowski ◽  
Nicholas Bokulich ◽  
Cheryl L Harris ◽  
Jennifer L Wampler ◽  
Fei Li ◽  
...  

Abstract Background Milk fat globule membrane (MFGM) and lactoferrin (LF) are human milk bioactive components demonstrated to support gastrointestinal (GI) and immune development. Significantly fewer diarrhea and respiratory-associated adverse events through 18 months of age were previously reported in healthy term infants fed a cow's milk-based infant formula with added source of bovine MFGM and bovine LF through 12 months of age. Objectives To compare microbiota and metabolite profiles in a subset of study participants. Methods Stool samples were collected at Baseline (10–14 days of age) and Day 120 (MFGM + LF: 26, Control: 33). Bacterial community profiling was performed via16S rRNA gene sequencing (Illumina MiSeq) and alpha and beta diversity were analyzed (QIIME 2). Differentially abundant taxa were determined using Linear discriminant analysis effect size (LefSE) and visualized (Metacoder). Untargeted stool metabolites were analyzed (HPLC/mass spectroscopy) and expressed as the fold-change between group means (Control: MFGM + LF ratio). Results Alpha diversity increased significantly in both groups from baseline to 4 months. Subtle group differences in beta diversity were demonstrated at 4 months (Jaccard distance; R2 = 0.01, P = 0.042). Specifically, Bacteroides uniformis and Bacteroides plebeius were more abundant in the MFGM + LF group at 4 months. Metabolite profile differences for MFGM + LF vs Control included: lower fecal medium chain fatty acids, deoxycarnitine, and glycochenodeoxycholate, and some higher fecal carbohydrates and steroids (P < 0.05). After applying multiple test correction, the differences in stool metabolomics were not significant. Conclusions Addition of bovine MFGM and LF in infant formula was associated with subtle differences in stool microbiome and metabolome by four months of age, including increased prevalence of Bacteroides species. Stool metabolite profiles may be consistent with altered microbial metabolism. Trial registration:  https://clinicaltrials.gov/ct2/show/NCT02274883).


Author(s):  
Yoshihiro Tomizawa ◽  
Shunya Kurokawa ◽  
Daiki Ishii ◽  
Katsuma Miyaho ◽  
Chiharu Ishii ◽  
...  

Abstract Background The antibacterial effects of psychotropics may be part of their pharmacological effects when treating depression. However, limited studies have focused on gut microbiota in relation to prescribed medication. Method We longitudinally investigated the relationship between patients’ prescribed medications and intestinal bacterial diversity in a naturalistic treatment course for patients with major depressive disorders and anxiety disorders. Patients were recruited and their stool was collected at 3 time points during their usual psychiatric treatments. Gut microbiota were analyzed using 16S rRNA gene sequencing. We examined the impact of psychotropics (i.e., antidepressants, anxiolytics, antipsychotics) on their gut microbial diversity and functions. Results We collected 246 stool samples from 40 patients. Despite no differences in microbial diversity between medication groups at the baseline, over the course of treatment, phylogenic diversity whole-tree diversity decreased in patients on antipsychotics compared with patients without (P = .027), and beta diversity followed this trend. Based on a fixed-effect model, antipsychotics predicted microbial diversity; the higher doses correlated with less diversity based on the Shannon index and phylogenic diversity whole tree (estimate = −0.00254, SE = 0.000595, P < .0001; estimate = −0.02644, SE = 0.00833, P = .002, respectively). Conclusion Antipsychotics may play a role in decreasing the alpha diversity of the gut microbiome among patients with depression and anxiety, and our results indicate a relationship with medication dosage. Future studies are warranted and should consider patients’ types and doses of antipsychotics in order to further elucidate the mechanisms of gut-brain interactions in psychiatric disorders.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1907.2-1907
Author(s):  
Y. Tsuji ◽  
M. Tamai ◽  
S. Morimoto ◽  
D. Sasaki ◽  
M. Nagayoshi ◽  
...  

Background:Anti-citrullinated protein antibody (ACPA) production is observed in several organs even prior to the onset of rheumatoid arthritis (RA), and oral mucosa is considered to be one of the important tissues. The presence of HLA-DRB1*SE closely associates with ACPA production. Saliva is considered to reflect the oral microbiota including periodontal disease. Alteration of oral microbiota of RA becomes to be normalized by DMARDs treatment, however, the interaction of HLA-DRB1*SE, ACPA and oral microbiota of RA patients remains to be elucidated.Objectives:The Nagasaki Island Study, which had started in 2014 collaborating with Goto City, is intended for research of the preclinical stage of RA, including ACPA/HLA genotype screening and ultrasound and magnetic resonance imaging examinations in high-risk subjects. Using the samples accumulated in this cohort, we have tried to investigate the difference of oral microbiota among RA patients and healthy subjects regarding to ACPA and HLA-DRB1*SE.Methods:Blood and salivary samples were obtained from 1422 subjects out of 4276 who have participated in the Nagasaki Island Study from 2016 to 2018. ACPA positivity was 1.7 % in total. Some of RA patients resided in Goto City participated in the Nagasaki Island Study. At this point, we selected 291 subjects, who were ACPA positive non-RA healthy subjects (n=22) and patients with RA (n=33, 11 subjects were ACPA positive and 22 ACPA negative respectively) as the case, age and gender matched ACPA negative non-RA healthy subjects (n=236) as the control. ACPA was measured by an enzyme-linked immunosorbent assay, and HLA genotyping was quantified by next-generation sequencing (Ref.1). The operational taxonomic unit (OUT) analysis using 16S rRNA gene sequencing were performed. The richness of microbial diversity within-subject (alpha diversity) was scaled via Shannon entropy. The dissimilarity between microbial community composition was calculated using Bray-Curtis distance as a scale, and differences between groups (beta diversity) were tested by permutational multivariate analysis of variance (PERMANOVA). In addition, UniFrac distance calculated in consideration of the distance on the phylogenetic tree were performed.Results:Median age 70 y.o., % Female 58.8 %. Among RA and non-RA subjects, not alpha diversity but beta diversity was statistically significance (p=0.022, small in RA). In RA subjects, both alpha and beta diversity is small (p<0.0001), especially significant in ACPA positive RA (Figure 1). Amongt RA subjects, presence of HLA-DRB1*SE did not show the difference but the tendency of being small of alpha diversity (p=0.29).Conclusion:Our study has suggested for the first time the association of oral microbiota alteration with the presence of ACPA and HLA-DRB1*SE. Oral dysbiosis may reflect the immunological status of patients with RA.References:[1]Kawaguchi S, et al. Methods Mol Biol 2018;1802: 22Disclosure of Interests:None declared


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 48-48
Author(s):  
Xiaofan Wang ◽  
Tsung Cheng Tsai ◽  
Charles V Maxwell ◽  
Jiangchao Zhao

Abstract Despite the recent advances in the swine gut microbiomes during different growth stages, a comprehensive longitudinal study of the lifelong dynamics of the swine gut microbiome is lacking. To fill this gap of knowledge, we selected seventeen piglets (PIC29*380) that were born on the same date from three sows. We collected a total of 274 rectal swabs during lactation (d 0, 11, 20), nursery (d 27, 33, 41, 50, 61), growing (d 76, 90, 104, 116), and finishing (d 130, 146, 159, and 174) stages. Samples were extracted using the Powersoil DNA isolation kit (Qiagen, Hilden, Germany) and sequenced with an Illumina Miseq sequencer targeting the V4 region of the 16 S rRNA gene. Sequences were analyzed with the Deblur algorithm in the QIIME2 package. In general, alpha diversity including community richness (e.g., number of observed features, Chao1) and diversity (e.g., Shannon Index) showed an overall trend of increasing from lactation to the finishing stage (P < 0.01). Gradual and significant changes in community structures were also observed along the four growth stages (ANOSIM, R = 0.66; P < 0.01). Non-parametric permutational multivariate analysis of variance shows that main factors driving the lifelong community dynamics included age and diet. Seventeen phylum members were discovered in the lifelong pig gut microbiome with Firmicutes and Bacteroidetes being the most abundant phyla. LEfSe analysis revealed 63 bacterial features that are stage specific. By using a regressing tree based Random Forest model we identified five bacterial features that are associated with swine growth performance including features 26 (Turicibacteraceae Turicibacter), 27 (Clostridium butyricum), 18 (Clostridiaceae), 19 (Clostridium perfringens) and 4 (Clostridiaceae). Characterization of the lifelong dynamics of 17 healthy pigs from birth to market provides a foundation for gut microbiome studies focusing on swine development, health and growth performance.


Author(s):  
Naoki Toyama ◽  
Daisuke Ekuni ◽  
Daisuke Matsui ◽  
Teruhide Koyama ◽  
Masahiro Nakatochi ◽  
...  

Few studies have exhaustively assessed relationships among polymorphisms, the microbiome, and periodontitis. The objective of the present study was to assess associations simultaneously among polymorphisms, the microbiome, and periodontitis. We used propensity score matching with a 1:1 ratio to select subjects, and then 22 individuals (mean age ± standard deviation, 60.7 ± 9.9 years) were analyzed. After saliva collection, V3-4 regions of the 16S rRNA gene were sequenced to investigate microbiome composition, alpha diversity (Shannon index, Simpson index, Chao1, and abundance-based coverage estimator) and beta diversity using principal coordinate analysis (PCoA) based on weighted and unweighted UniFrac distances. A total of 51 single-nucleotide polymorphisms (SNPs) related to periodontitis were identified. The frequencies of SNPs were collected from Genome-Wide Association Study data. The PCoA of unweighted UniFrac distance showed a significant difference between periodontitis and control groups (p < 0.05). There were no significant differences in alpha diversity and PCoA of weighted UniFrac distance (p > 0.05). Two families (Lactobacillaceae and Desulfobulbaceae) and one species (Porphyromonas gingivalis) were observed only in the periodontitis group. No SNPs showed significant expression. These results suggest that periodontitis was related to the presence of P. gingivalis and the families Lactobacillaceae and Desulfobulbaceae but not SNPs.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 28-29
Author(s):  
Mireia Saladrigas García ◽  
Mario Durán ◽  
Jaume Coma ◽  
José Francisco Pérez ◽  
Susana María Martín-Orúe

Abstract The aim of the present study was to explore the evolution of piglet gut microbiota from birth to weaning. Moreover, it was hypothesized that different farm environments could condition this process. Two farms, distinct in their use of antibiotics, and 10 litters per farm were selected. A total of 100 fecal samples were obtained from the same pig of each litter on d2, d7, d14 and d21 of lactation and d14 after weaning. The DNA was extracted by using the PSP® Spin Stool DNA Kit and sequencing of the 16S rRNA gene (V3-V4 region) performed by Illumina MiSeq Platform. Bioinformatics and biostatistical analysis were performed with QIIME and the open-source software R v3.5.3. (phyloseq package). Alpha diversity was strongly affected by age (P&lt; 0.001), with an increasing richness of species through time. Beta diversity decreased after weaning (P&lt; 0.001), suggesting a convergent evolution among individuals. Regarding the structure of the microbiota, a clear clustering of the samples according to age was observed (P&lt; 0.001). A progressive decrease was observed as the piglets aged for Clostridiaceae, Enterobacteriaceae, Fusobacteriaceae, Pasteurellaceae and Streptococcaceae (P&lt; 0.001). In contrast, Lachnospiraceae (P=0.003), Lactobacillaceae (P=0.003) and Veillonellaceae (P=0.025) increased along the d7–d14 period, but decreased afterwards. Campylobacteraceae, Erysipelotrichaceae, Ruminococcaceae (P&lt; 0.001) and Prevotellaceae (P=0.005) gradually increased with age reflecting the change from a milk-oriented microbiome towards a butyrate-producing one. Regarding the impact of the farm, differences in species richness were found and also a distinct microbial structure (ANOSIM: P=0.025) associated to changes in some particular taxonomic groups. In conclusion, during the transition from birth to weaning, the pig microbiota showed a relevant succession of microbial groups towards a more stable ecosystem better adapted to the dry feed. In this relevant early-age process differences between farms seems to have a limited impact.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rune Nielsen ◽  
Yaxin Xue ◽  
Inge Jonassen ◽  
Ingvild Haaland ◽  
Øyvind Kommedal ◽  
...  

Abstract Objective Little is known concerning the stability of the lower airway microbiome. We have compared the microbiota identified by repeated bronchoscopy in healthy subjects and patients with ostructive lung diseaseases (OLD). Methods 21 healthy controls and 41 patients with OLD completed two bronchoscopies. In addition to negative controls (NCS) and oral wash (OW) samples, we gathered protected bronchoalveolar lavage in two fractions (PBAL1 and PBAL2) and protected specimen brushes (PSB). After DNA extraction, we amplified the V3V4 region of the 16S rRNA gene, and performed paired-end sequencing (Illumina MiSeq). Initial bioinformatic processing was carried out in the QIIME-2 pipeline, identifying amplicon sequence variants (ASVs) with the DADA2 algorithm. Potentially contaminating ASVs were identified and removed using the decontam package in R and the sequenced NCS. Results A final table of 551 ASVs consisted of 19 × 106 sequences. Alpha diversity was lower in the second exam for OW samples, and borderline lower for PBAL1, with larger differences in subjects not having received intercurrent antibiotics. Permutational tests of beta diversity indicated that within-individual changes were significantly lower than between-individual changes. A non-parametric trend test showed that differences in composition between the two exams (beta diversity) were largest in the PSBs, and that these differences followed a pattern of PSB > PBAL2 > PBAL1 > OW. Time between procedures was not associated with increased diversity. Conclusion The airways microbiota varied between examinations. However, there is compositional microbiota stability within a person, beyond that of chance, supporting the notion of a transient airways microbiota with a possibly more stable individual core microbiome.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Robert C. Kaplan ◽  
Zheng Wang ◽  
Mykhaylo Usyk ◽  
Daniela Sotres-Alvarez ◽  
Martha L. Daviglus ◽  
...  

Abstract Background Hispanics living in the USA may have unrecognized potential birthplace and lifestyle influences on the gut microbiome. We report a cross-sectional analysis of 1674 participants from four centers of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), aged 18 to 74 years old at recruitment. Results Amplicon sequencing of 16S rRNA gene V4 and fungal ITS1 fragments from self-collected stool samples indicate that the host microbiome is determined by sociodemographic and migration-related variables. Those who relocate from Latin America to the USA at an early age have reductions in Prevotella to Bacteroides ratios that persist across the life course. Shannon index of alpha diversity in fungi and bacteria is low in those who relocate to the USA in early life. In contrast, those who relocate to the USA during adulthood, over 45 years old, have high bacterial and fungal diversity and high Prevotella to Bacteroides ratios, compared to USA-born and childhood arrivals. Low bacterial diversity is associated in turn with obesity. Contrasting with prior studies, our study of the Latino population shows increasing Prevotella to Bacteroides ratio with greater obesity. Taxa within Acidaminococcus, Megasphaera, Ruminococcaceae, Coriobacteriaceae, Clostridiales, Christensenellaceae, YS2 (Cyanobacteria), and Victivallaceae are significantly associated with both obesity and earlier exposure to the USA, while Oscillospira and Anaerotruncus show paradoxical associations with both obesity and late-life introduction to the USA. Conclusions Our analysis of the gut microbiome of Latinos demonstrates unique features that might be responsible for health disparities affecting Hispanics living in the USA.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 745
Author(s):  
Michelle Martin de Bustamante ◽  
Diego Gomez ◽  
Jennifer MacNicol ◽  
Ralph Hamor ◽  
Caryn Plummer

The objective of this study was to describe and compare the fecal bacterial microbiota of horses with equine recurrent uveitis (ERU) and healthy horses using next-generation sequencing techniques. Fecal samples were collected from 15 client-owned horses previously diagnosed with ERU on complete ophthalmic examination. For each fecal sample obtained from a horse with ERU, a sample was collected from an environmentally matched healthy control with no evidence of ocular disease. The Illumina MiSeq sequencer was used for high-throughput sequencing of the V4 region of the 16S rRNA gene. The relative abundance of predominant taxa, and alpha and beta diversity indices were calculated and compared between groups. The phyla Firmicutes, Bacteroidetes, Verrucomicrobia, and Proteobacteria predominated in both ERU and control horses, accounting for greater than 60% of sequences. Based on linear discriminant analysis effect size (LEfSe), no taxa were found to be enriched in either group. No significant differences were observed in alpha and beta diversity indices between groups (p > 0.05 for all tests). Equine recurrent uveitis is not associated with alteration of the gastrointestinal bacterial microbiota when compared with healthy controls.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 180
Author(s):  
Negash Kabtimer Bereded ◽  
Getachew Beneberu Abebe ◽  
Solomon Workneh Fanta ◽  
Manuel Curto ◽  
Herwig Waidbacher ◽  
...  

The gut microbiota of fishes is known to play an essential role in diverse aspects of host biology. The gut microbiota of fish is affected by various environmental parameters, including temperature changes, salinity and diet. Studies of effect of environment on gut microbiota enables to have a further understanding of what comprises a healthy microbiota under different environmental conditions. However, there is insufficient understanding regarding the effects of sampling season and catching site (wild and aquaculture) on the gut microbiota of Nile tilapia. This study characterised gut microbial composition and diversity from samples collected from Lake Tana and the Bahir Dar aquaculture facility centre using 16S rDNA Illumina MiSeq platform sequencing. Firmicutes and Fusobacteria were the most dominant phyla in the Lake Tana samples, while Proteobacteria was the most dominant in the aquaculture samples. The results of differential abundance testing clearly indicated significant differences for Firmicutes, Fusobacteria, Bacteroidetes and Cyanobacteria across sampling months. However, Proteobacteria, Chloroflexi, Fusobacteria and Cyanobacteria were significantly enriched in the comparison of samples from the Lake Tana and aquaculture centre. Significant differences were observed in microbial diversity across sampling months and between wild and captive Nile tilapia. The alpha diversity clearly showed that samples from the aquaculture centre (captive) had a higher diversity than the wild Nile tilapia samples from Lake Tana. The core gut microbiota of all samples of Nile tilapia used in our study comprised Firmicutes, Proteobacteria and Fusobacteria. This study clearly showed the impact of sampling season and catching site (wild and aquaculture) on the diversity and composition of bacterial communities associated with the gut of Nile tilapia. Overall, this is the first study on the effects of sampling season and catching site on the gut microbiota of Nile tilapia in Ethiopia. Future work is recommended to precisely explain the causes of these changes using large representative samples of Nile tilapia from different lakes and aquaculture farms.


Sign in / Sign up

Export Citation Format

Share Document