scholarly journals Design of 22KW LPG Burner for an Oil Refinery Boiler

Author(s):  
B. S. Kinigoma ◽  
G. O. Ani

The oil refining process is energy-intensive since every aspect of the process consumes energy. The need to minimize energy consumption when raising steam in boilers using Liquefied Petroleum Gas (LPG) burner was the focus of this study, to proffer techniques for improving optimum thermal efficiency via proper burner design and positioning. Burner design models were utilized to evaluate parameters for optimum combustion, to deliver the expected thermal output, including thermal efficiency. The results of this study suggest that, to design a 22KW LPG burner for an oil refinery boiler, the optimum values estimated for the burner parameters for efficient combustion at a gas flow rate of 1.89x10-4m3/sec, including Wobbe Index (83285.7KJ/m3), size of burner nozzle (1.9 mm), gas supply pressure (0.80 psi), length of burner slot for air entrainment (137.61 mm), size of burner pipe (46.48 mm), total orifice diameter (400.53 mm), and number of 3 mm. Studies elsewhere also suggest that if a proper angle between the burner axis and the boiler surface is achieved, significant changes in the amount of gas used can results positively in the direction of fuel utilization efficiency, thereby saving the cost of steam production in an LPG fired refinery boiler.

Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


Author(s):  
I. V. Ginko ◽  
T. M. Sushinskaya ◽  
A. L. Rybina

Studies have been conducted to assess the impact of factors of the production environment on employees of the oil refinery ofJSC «Naftan». Significant differences with the comparison group on the indicators of SVT were revealed. Priority nosological forms of employees of the main group are identified.


2011 ◽  
Vol 39 (6) ◽  
pp. 1103-1110 ◽  
Author(s):  
J. E. Ritchie ◽  
A. B. Williams ◽  
C. Gerard ◽  
H. Hockey

In this study, we evaluated the performance of a humidified nasal high-flow system (Optiflow™, Fisher and Paykel Healthcare) by measuring delivered FiO2 and airway pressures. Oxygraphy, capnography and measurement of airway pressures were performed through a hypopharyngeal catheter in healthy volunteers receiving Optiflow™ humidified nasal high flow therapy at rest and with exercise. The study was conducted in a non-clinical experimental setting. Ten healthy volunteers completed the study after giving informed written consent. Participants received a delivered oxygen fraction of 0.60 with gas flow rates of 10, 20, 30, 40 and 50 l/minute in random order. FiO2, FEO2, FECO2 and airway pressures were measured. Calculation of FiO2 from FEO2 and FECO2 was later performed. Calculated FiO2 approached 0.60 as gas flow rates increased above 30 l/minute during nose breathing at rest. High peak inspiratory flow rates with exercise were associated with increased air entrainment. Hypopharyngeal pressure increased with increasing delivered gas flow rate. At 50 l/minute the system delivered a mean airway pressure of up to 7.1 cmH2O. We believe that the high gas flow rates delivered by this system enable an accurate inspired oxygen fraction to be delivered. The positive mean airway pressure created by the high flow increases the efficacy of this system and may serve as a bridge to formal positive pressure systems.


2021 ◽  
Vol 66 (05) ◽  
pp. 106-108
Author(s):  
Aytac Turab qızı Hüseynova ◽  

The Oil Refinery of Heydar Aliyev was created in July 1953 as a new oil refining plant Baki. The combined atmospheric vacuum plant is the main plant at the oil refining factory and its starting capacity produces 6 million tons of crude oil. In 2010, 43,000 tons A-98, 1.18 tons of A-92 and 19,700 tons of gasoline A-80. At the same time, 600 400t kerosene, 214,000 diesel fuels, 214,000 tons. Liquid gas, 267 500t coke and 220 600t. With this investigation, the history of the oil refinery and the details of modernization were considered. 21 out of 24 types of Azerbaijani oil are processed at the Baku Oil Refinery named after Heydar Aliyev, of which 15 types of oil products, including gasoline, aviation kerosene, diesel fuel, fuel oil, petroleum coke, etc. are produced. The plant fully meets the needs of the republic in oil products. In addition, 45% of oil products are exported to foreign countries. Key words: Azerbaijani, oil, recycling, factory, modernization


2012 ◽  
Author(s):  
Sharifah Rafidah Wan Alwi ◽  
Muhammad Azan Tamar Jaya ◽  
Zainuddin Abdul Manan

Kilang penapisan minyak sawit lazimnya melibatkan proses penggunaan tenaga yang tinggi. Peningkatan kecekapan tenaga adalah amat penting bagi memastikan keuntungan tercapai. Kertas kerja ini menggunakan teknik analisis jepit bagi memaksimumkan penggunaan semula haba dan meningkatkan kecekapan sistem rangkaian haba sedia ada di kilang penghasilan minyak sawit, tertakluk kepada kekangan–kekangan proses. Langkah–langkah yang terlibat ialah penetapan sasaran guna semula haba maksimum diikuti dengan reka bentuk rangkaian haba yang ekonomik. Aplikasi teknik berkenaan kepada kilang penghasilan minyak sawit telah menghasilkan pengurangan penggunaan haba panas dan sejuk sebanyak 700 kW (21%), atau penjimatan kos utiliti sebanyak RM370,787, dengan pelaburan kapital sebanyak RM656,293 dan jangka pulangan balik selama 1.77 tahun. Kata kunci: Analisis jepit; minyak kelapa sawit; sedia ada; rangkaian pemindahan haba; kitar semula haba maksimum A palm oil refinery involves energy–intensive processes. Maximizing thermal efficiency of palm oil refinery is crucial for the plant profitability. This work implements a pinch analysis retrofit technique to maximize heat recovery and thermal efficiency of a palm oil refinery, subject to the existing process constraints. The procedures involve setting the maximum heat recovery targets and cost–effective retrofit of the heat exchanger network (HEN). Application of the technique on a palm oil refinery results in reduction of 700 kW (21%) heating and cooling loads or a saving of RM370,787, incurring a capital investment of about RM656,293 and a payback period of 1.77 years. Key words: Pinch analysis; palm oil; retrofit; heat exchanger network; maximum heat recovery


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 239 ◽  
Author(s):  
Meng Li ◽  
Han Wei ◽  
Yao Ge ◽  
Guocai Xiao ◽  
Yaowei Yu

Charging directly affects the burden distribution of a blast furnace, which determines the gas distribution in the shaft of the furnace. Adjusting the charging can improve the distribution of the gas flow, increase the gas utilization efficiency of the furnace, reduce energy consumption, and prolong the life of the blast furnace. In this paper, a mathematical model of blast furnace charging was developed and applied on a steel plant in China, which includes the display of the burden profile, burden layers, descent speed of the layers, and ore/coke ratio. Furthermore, the mathematical model is developed to combine the radar data of the burden profile. The above model is currently used in Nanjing Steel as a reference for operators to adjust the charging. The model is being tested with a radar system on the blast furnace.


Author(s):  
Bibhuti B. Sahoo ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Synthesis gas (Syngas), a mixture of hydrogen and carbon monoxide, can be manufactured from natural gas, coal, petroleum, biomass, and even from organic wastes. It can substitute fossil diesel as an alternative gaseous fuel in compression ignition engines under dual fuel operation route. Experiments were conducted in a single cylinder, constant speed and direct injection diesel engine fuelled with syngas-diesel in dual fuel mode. The engine is designed to develop a power output of 5.2 kW at its rated speed of 1500 rpm under variable loads with inducted syngas fuel having H2 to CO ratio of 1:1 by volume. Diesel fuel as a pilot was injected into the engine in the conventional manner. The diesel engine was run at varying loads of 20, 40, 60, 80 and 100%. The performance of dual fuel engine is assessed by parameters such as thermal efficiency, exhaust gas temperature, diesel replacement rate, gas flow rate, peak cylinder pressure, exhaust O2 and emissions like NOx, CO and HC. Dual fuel operation showed a decrease in brake thermal efficiency from 16.1% to a maximum of 20.92% at 80% load. The maximum diesel substitution by syngas was found 58.77% at minimum exhaust O2 availability condition of 80% engine load. The NOx level was reduced from 144 ppm to 103 ppm for syngas-diesel mode at the best efficiency point. Due to poor combustion efficiency of dual fuel operation, there were increases in CO and HC emissions throughout the range of engine test loads. The decrease in peak pressure causes the exhaust gas temperature to rise at all loads of dual fuel operation. The present investigation provides some useful indications of using syngas fuel in a diesel engine under dual fuel operation.


Author(s):  
Mithun Das ◽  
Ranjan Ganguly ◽  
Amitava Datta ◽  
Meenam M. Verma ◽  
Ashis K. Bera

Abstract Liquefied petroleum gas (LPG) is widely used as a cooking fuel as it has higher energy content and produces lower emissions compared to other traditional fuels. Due to massive demand for LPG, aside from its limited reserve, performance improvement of the LPG cook-stoves is essential. In the present work, the thermal efficiency of a traditional cook stove has been studied both experimentally and numerically for LPG fuel. Based on the knowledge from the computational model concerning flow field and species transport parameters, the conventional cook-stove design has been modified for improving the efficiency. In the modified design of the stove, attachment of an annular metal plate insert and introduction of an extended spill-tray to close the gap around the burner are considered. The modifications result in favourable guidance of the flow of secondary air and hot product gases of combustion to ensure better heat transfer rate to the loading vessel. The thermal efficiency of the modified cook-stove is around 73.6%, which is about 4.7 percentage point improvement from that of an identical stove without the insert and extended spill-try.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3528
Author(s):  
Jakub Lasocki ◽  
Artur Kopczyński ◽  
Paweł Krawczyk ◽  
Paweł Roszczyk

A range extender is an auxiliary power unit, usually consisting of an internal combustion engine and an electric generator, which is used to charge a battery of an electric vehicle in order to increase its range. This paper considers a range extender supplied with liquefied petroleum gas (LPG). The aim is to provide detailed data on thermal efficiency, brake specific fuel consumption (BSFC), and unit emission of carbon dioxide (CO2) in a broad spectrum of range extender operating conditions defined by rotational speed and torque. The experimental investigation has been conducted using a laboratory test stand equipped with an energy dissipation system of adjustable resistance. Measurement results, including fuel flow rate, were processed using custom algorithm for generating maps, i.e., two-dimensional dependencies of the considered parameters on the rotational speed and torque. The maps obtained for LPG supply were compared with those for gasoline supply. The results demonstrated feasibility of LPG-supplied range extender. Its BSFC and thermal efficiency were at a comparable level to those obtained for gasoline supply, but with less CO2 emission. The empirical data collected has been adopted in the simulation of extended-range electric vehicle in a driving cycle, showing the potential of utilizing the results of this study.


2019 ◽  
Vol 805 ◽  
pp. 109-115
Author(s):  
Rapeepong Peamsuwan ◽  
Anucha Klamnoi ◽  
Narongsak Yotha ◽  
Bundit Krittacom

The relation between the significant factors and the combustion temperature (T) of Liquid Petroleum Gas (LPG) on the spherical packed-bed porous burner is investigated. Alumina-Cordierite ceramic balls having the average diameter (d) of 3 mm. and the porosity (ε) of 0.322 are employed as porous media. The multiple-linear and multiple-quadratic regressions are used to analyze the data at the equivalence ratio (F) of 0.58 – 0.66 and volumetric premixed-gas flow rate (Vmix) in a range of 10 – 25 m3/h. The porous thickness (H) is in the range of 2.5 – 7.5 cm. Thus, independent variables are F, Vmix and H. The dependent variable is the maximum temperature (T) of combustion LPG on the porous burner. For statistical analysis, both main and interaction of independent variables effecting to the combustion temperature are investigated. The results showed that, for the case of multiple-linear regression, an equations recommended in prediction of the T on porous burner is T = 1375.603(F) +179.636(H) – 295.028(FH) – 9.628(HVmix) + 16.368(FVmixH) with a coefficient of determination (R2) of 0.998 and the standard error of the estimation of 42.7365. In the case of multiple- quadratic regression, a proper equation used in predicting T on porous burner is T = 2133.184(F)2 + 1.247(Vmix)2 + 17.248(H)2 – 2.916(FVmix )2 – 42.107(FH)2 – 0.049(VmixH)2 + 0.123(FVmixH)2 with R2 of 0.997 and standard error of the estimation of 44.2979. In addition, the comparison between the experimental results and the predicted estimation is reported that different percentage of both regressions and experimental results is satisfied.


Sign in / Sign up

Export Citation Format

Share Document