scholarly journals Paternal environmental exposure-induced spermatozoal small noncoding RNA alteration meditates the intergenerational epigenetic inheritance of multiple diseases

Author(s):  
Xin Yin ◽  
Azhar Anwar ◽  
Yanbo Wang ◽  
Huanhuan Hu ◽  
Gaoli Liang ◽  
...  

AbstractStudies of human and mammalian have revealed that environmental exposure can affect paternal health conditions as well as those of the offspring. However, studies that explore the mechanisms that meditate this transmission are rare. Recently, small noncoding RNAs (sncRNAs) in sperm have seemed crucial to this transmission due to their alteration in sperm in response to environmental exposure, and the methodology of microinjection of isolated total RNA or sncRNAs or synthetically identified sncRNAs gradually lifted the veil of sncRNA regulation during intergenerational inheritance along the male line. Hence, by reviewing relevant literature, this study intends to answer the following research concepts: (1) paternal environmental factors that can be passed on to offspring and are attributed to spermatozoal sncRNAs, (2) potential role of paternal spermatozoal sncRNAs during the intergenerational inheritance process, and (3) the potential mechanism by which spermatozoal sncRNAs meditate intergenerational inheritance. In summary, increased attention highlights the hidden wonder of spermatozoal sncRNAs during intergenerational inheritance. Therefore, in the future, more studies should focus on the origin of RNA alteration, the target of RNA regulation, and how sncRNA regulation during embryonic development can be sustained even in adult offspring.

2019 ◽  
Author(s):  
Yunpeng Yang ◽  
Nannan Lang ◽  
Huan Zhang ◽  
Lu Zhang ◽  
Changsheng Chai ◽  
...  

ABSTRACTSmall noncoding RNAs (sncRNAs) are crucial regulatory molecules in organisms and are well known not only for their roles in the control of diverse essential biological processes but also for their value in genetic modification. However, to date, in gram-positive anaerobic solventogenic clostridia (which are a group of important industrial bacteria with exceptional substrate and product diversity), sncRNAs remain minimally explored, leading to a lack of detailed understanding regarding these important molecules and their use as targets for genetic improvement. Here, we performed large-scale phenotypic screens of a transposon-mediated mutant library ofClostridium acetobutylicum, a typical solventogenic clostridial species, and discovered a novel sncRNA (sr8384) that functions as a determinant positive regulator of growth and solvent synthesis. Comparative transcriptomic data combined with genetic and biochemical analyses revealed that sr8384 acts as a pleiotropic regulator and controls multiple targets that are associated with crucial biological processes, through direct or indirect interactions. Notably, modulation of the expression level of either sr8384 or its core target genes significantly increased the growth rate, solvent titer and productivity of the cells, indicating the importance of sr8384-mediated regulatory network inC. acetobutylicum. Furthermore, a homolog of sr8384 was discovered and proven to be functional in another importantClostridiumspecies,C. beijerinckii, suggesting the potential broad role of this sncRNA in clostridia. Our work showcases a previously unknown potent and complex role of sncRNAs in clostridia, providing new opportunities for understanding and engineering these anaerobes, including pathogenicClostridiumspecies.IMPORTANCEThe discovery of sncRNAs as new resources for functional studies and strain modifications are promising strategies in microorganisms. However, these crucial regulatory molecules have hardly been explored in industrially important solventogenic clostridia. Here, we identified sr8384 as a novel determinant sncRNA controlling cellular performance of solventogenicClostridium acetobutylicumand performed detailed functional analysis, which is the most in-depth study of sncRNAs in clostridia to date. We reveal the pleiotropic function of sr8384 and its multiple direct and indirect crucial targets, which represents a valuable source for understanding and optimizing this anaerobe. Of note, manipulation of these targets leads to improved cell growth and solvent synthesis. Our findings provide a new perspective for future studies on regulatory sncRNAs in clostridia.


Author(s):  
Ashutosh Singh ◽  
Ashutosh Kumar Singh ◽  
Rajanish Giri ◽  
Dhruv Kumar ◽  
Rohit Sharma ◽  
...  

MicroRNAs (miRNAs), a class of small noncoding RNA, posttranscriptionally regulate the expression of genes. Aberrant expression of miRNA is reported in various types of cancer. Since the first report of oncomiR-21 involvement in the glioma, its upregulation was reported in multiple cancers and was allied with high oncogenic property. In addition to the downregulation of tumor suppressor genes, the miR-21 is also associated with cancer resistance to various chemotherapy. The recent research is appraising miR-21 as a promising cancer target and biomarker for early cancer detection. In this review, we briefly explain the biogenesis and regulation of miR-21 in cancer cells. Additionally, the review features the assorted genes/pathways regulated by the miR-21 in various cancer and cancer stem cells.


2018 ◽  
Vol 38 (3) ◽  
Author(s):  
Qianyun Feng ◽  
Sheng Zheng ◽  
Jia Zheng

Osteoporosis, a common and multifactorial disease, is influenced by genetic factors and environments. However, the pathogenesis of osteoporosis has not been fully elucidated yet. Recently, emerging evidence suggests that epigenetic modifications may be the underlying mechanisms that link genetic and environmental factors with increased risks of osteoporosis and bone fracture. MicroRNA (miRNA), a major category of small noncoding RNA with 20–22 bases in length, is recognized as one important epigenetic modification. It can mediate post-transcriptional regulation of target genes with cell differentiation and apoptosis. In this review, we aimed to profile the role of miRNA in bone remodeling and its therapeutic implications for osteoporosis. A deeper insight into the role of miRNA in bone remodeling and osteoporosis can provide unique opportunities to develop a novel diagnostic and therapeutic approach of osteoporosis.


2020 ◽  
Vol 27 (2) ◽  
pp. 66-71
Author(s):  
Ozal Arzuman Beylerli ◽  
Ilgiz F. Gareev ◽  
Valentin N. Pavlov

MicroRNAs (miRNAs) are a class of small noncoding RNA molecules that negatively regulate gene expression at posttranscriptional levels. MiRNAs regulate many normal physiological processes, and also play an important role in the development of most disorders. The expression levels of miRNAs are characterized by endogenous properties and tissue specificity. These characteristics increase the likelihood that miRNAs can serve as useful clinical biomarkers in the diagnosis of certain diseases. Chronic lower back pain is usually associated with degeneration of the intervertebral disc (IDD), which is closely associated with apoptosis, impaired extracellular matrix, cell proliferation, and an inflammatory response. This process is characterized by a cascade of molecular, cellular, biochemical, and structural changes. Currently, there is no clinical therapy that shows the pathophysiology of disk degeneration. The presence of unregulated expression of miRNA in patients with degenerative disk disease indicates a vital role of miRNAs in the pathogenesis of IDD. It becomes apparent that epigenetic processes affect the evolution of IDD as much as the genetic background. Deregulated phenotypes of pulp nucleus cells, including differentiation, migration, proliferation, and apoptosis, are involved in all stages of the progression of human IDD. In this review, we will focus on the role and therapeutic value of miRNAs in IDD.


2021 ◽  
Author(s):  
Aditi Shukla ◽  
Roberto Perales ◽  
Scott Kennedy

AbstractNoncoding RNAs have emerged as mediators of transgenerational epigenetic inheritance (TEI) in a number of organisms. A robust example of RNA-directed TEI is the inheritance of gene silencing states following RNA interference (RNAi) in the metazoan C. elegans. During RNAi inheritance, gene silencing is transmitted by a self-perpetuating cascade of siRNA-directed poly(UG) tailing of mRNA fragments (pUGylation), followed by siRNA synthesis from poly(UG)-tailed mRNA templates (termed pUG RNA/siRNA cycling). Despite the self-perpetuating nature of pUG RNA/siRNA cycling, RNAi inheritance is finite, suggesting that systems likely exist to prevent permanent RNAi-triggered gene silencing. Here we show that, in the absence of Piwi-interacting RNAs (piRNAs), an animal-specific class of small noncoding RNA, RNAi-based gene silencing can become essentially permanent, lasting at near 100% penetrance for more than five years and hundreds of generations. This permanent gene silencing is mediated by perpetual activation of the pUG RNA/siRNA TEI pathway. Further, we find that piRNAs coordinate endogenous RNAi pathways to prevent germline-expressed genes, which are not normally subjected to TEI, from entering a state of permanent and irreversible epigenetic silencing also mediated by perpetual activation of pUG RNA/siRNA cycling. Together, our results show that one function of C. elegans piRNAs is to insulate germline-expressed genes from aberrant and runaway inactivation by the pUG RNA/siRNA epigenetic inheritance system.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Nima Purvis ◽  
Andrew Bahn ◽  
Rajesh Katare

Stem cells are considered as the next generation drug treatment in patients with cardiovascular disease who are resistant to conventional treatment. Among several stem cells used in the clinical setting, cardiac stem cells (CSCs) which reside in the myocardium and epicardium of the heart have been shown to be an effective option for the source of stem cells. In normal circumstances, CSCs primarily function as a cell store to replace the physiologically depleted cardiovascular cells, while under the diseased condition they have been shown to experimentally regenerate the diseased myocardium. In spite of their major functional role, molecular mechanisms regulating the CSCs proliferation and differentiation are still unknown. MicroRNAs (miRs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Recent studies have demonstrated the important role of miRs in regulating stem cell proliferation and differentiation, as well as other physiological and pathological processes related to stem cell function. This review summarises the current understanding of the role of miRs in CSCs. A deeper understanding of the mechanisms by which miRs regulate CSCs may lead to advances in the mode of stem cell therapies for the treatment of cardiovascular diseases.


2021 ◽  
Vol 99 (3) ◽  
Author(s):  
Lauren G Chukrallah ◽  
Aditi Badrinath ◽  
Kelly Seltzer ◽  
Elizabeth M Snyder

Abstract Ruminants are major producers of meat and milk, thus managing their reproductive potential is a key element in cost-effective, safe, and efficient food production. Of particular concern, defects in male germ cells and female germ cells may lead to significantly reduced live births relative to fertilization. However, the underlying molecular drivers of these defects are unclear. Small noncoding RNAs, such as piRNAs and miRNAs, are known to be important regulators of germ-cell physiology in mouse (the best-studied mammalian model organism) and emerging evidence suggests that this is also the case in a range of ruminant species, in particular bovine. Similarities exist between mouse and bovids, especially in the case of meiotic and postmeiotic male germ cells. However, fundamental differences in small RNA abundance and metabolism between these species have been observed in the female germ cell, differences that likely have profound impacts on their physiology. Further, parentally derived small noncoding RNAs are known to influence early embryos and significant species-specific differences in germ-cell born small noncoding RNAs have been observed. These findings demonstrate the mouse to be an imperfect model for understanding germ-cell small noncoding RNA biology in ruminants and highlight the need to increase research efforts in this underappreciated aspect of animal reproduction.


2016 ◽  
Vol 9 (3) ◽  
pp. 243-249 ◽  
Author(s):  
Taylor S. Cohen

The immune response to respiratory pathogens must be robust enough to defend the host yet properly constrained such that inflammation-induced tissue damage is avoided. MicroRNA (miRNA) are small noncoding RNA which posttranscriptionally influence gene expression. In this review, we discuss recent experimental evidence of the contribution of miRNA to the lung's response to bacterial and viral pathogens.


2017 ◽  
Vol 49 (9) ◽  
pp. 505-518 ◽  
Author(s):  
Claire L. Riggs ◽  
Jason E. Podrabsky

Small noncoding RNAs (sncRNA) have recently emerged as specific and rapid regulators of gene expression, involved in a myriad of cellular and organismal processes. MicroRNAs, a class of sncRNAs, are differentially expressed in diverse taxa in response to environmental stress, including anoxia. In most vertebrates, a brief period of oxygen deprivation results in severe tissue damage or death. Studies on sncRNA and anoxia have focused on these anoxia-sensitive species. Studying sncRNAs in anoxia-tolerant organisms may provide insight into adaptive mechanisms supporting anoxia tolerance. Embryos of the annual killifish Austrofundulus limnaeus are the most anoxia-tolerant vertebrates known, surviving over 100 days at their peak tolerance at 25°C. Their anoxia tolerance and physiology vary over development, such that both anoxia-tolerant and anoxia-sensitive phenotypes comprise the species. This allows for a robust comparison to identify sncRNAs essential to anoxia-tolerance. For this study, RNA sequencing was used to identify and quantify expression of sncRNAs in four embryonic stages of A. limnaeus in response to an exposure to anoxia and subsequent aerobic recovery. Unique stage-specific patterns of expression were identified that correlate with anoxia tolerance. In addition, embryos of A. limnaeus appear to constitutively express stress-responsive miRNAs. Most differentially expressed sncRNAs were expressed at higher levels during recovery. Many novel groups of sncRNAs with expression profiles suggesting a key role in anoxia tolerance were identified, including sncRNAs derived from mitochondrial tRNAs. This global analysis has revealed groups of candidate sncRNAs that we hypothesize support anoxia tolerance.


2020 ◽  
Vol 88 (7) ◽  
Author(s):  
Amanda J. Kreuder ◽  
Brandon Ruddell ◽  
Kathy Mou ◽  
Alan Hassall ◽  
Qijing Zhang ◽  
...  

ABSTRACT Small noncoding RNAs (ncRNAs) are involved in many important physiological functions in pathogenic microorganisms. Previous studies have identified the presence of noncoding RNAs in the major zoonotic pathogen Campylobacter jejuni; however, few have been functionally characterized to date. CjNC110 is a conserved ncRNA in C. jejuni, located downstream of the luxS gene, which is responsible for the production of the quorum sensing molecule autoinducer-2 (AI-2). In this study, we utilized strand specific high-throughput RNAseq to identify potential targets or interactive partners of CjNC110 in a sheep abortion clone of C. jejuni. These data were then utilized to focus further phenotypic evaluation of the role of CjNC110 in motility, autoagglutination, quorum sensing, hydrogen peroxide sensitivity, and chicken colonization in C. jejuni. Inactivation of the CjNC110 ncRNA led to a statistically significant decrease in autoagglutination ability as well as increased motility and hydrogen peroxide sensitivity compared to the wild-type. Extracellular AI-2 detection was decreased in ΔCjNC110; however, intracellular AI-2 accumulation was significantly increased, suggesting a key role of CjNC110 in modulating the transport of AI-2. Notably, ΔCjNC110 also showed a decreased ability to colonize chickens. Complementation of CjNC110 restored all phenotypic changes back to wild-type levels. The collective results of the phenotypic and transcriptomic changes observed in our data provide valuable insights into the pathobiology of C. jejuni sheep abortion clone and strongly suggest that CjNC110 plays an important role in the regulation of energy taxis, flagellar glycosylation, cellular communication via quorum sensing, oxidative stress tolerance, and chicken colonization in this important zoonotic pathogen.


Sign in / Sign up

Export Citation Format

Share Document