Effects of CO2on Spray Solution pH

1995 ◽  
Vol 9 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Michael P. Braverman ◽  
James L. Griffin

The pH of deionized water, initially adjusted to a pH of 6 to 9, all decreased to near pH 5 upon pressurization with CO2in a backpack spray system. When deionized water contained bicarbonate (NaHCO3or KHCO3) at 0 to 800 mg/L to buffer against a pH decrease from CO2pressurization the return to their initial pH was more rapid than deionized water alone regardless of bicarbonate source. Acidification of spray solution following CO2pressurization of 138, 276, or 414 kPa was similar and bicarbonate had a greater effect than spray pressure. Addition of acidifying buffer and bicarbonate to the solution resulted in an initial and post-CO2pressurization pH range of less than one pH unit. All spray solution pH levels returned to near their initial pH following depressurization, indicating that the pH decrease was not permanent. Rate of recovery from acidification with CO2increased with initial pH and bicarbonate concentration.

2013 ◽  
Vol 27 (3) ◽  
pp. 445-447 ◽  
Author(s):  
Jared M. Roskamp ◽  
William G. Johnson

Saflufenacil solubility and efficacy has been shown to be influenced by carrier water pH. This research was conducted to determine if altering the pH of a solution already containing saflufenacil would influence the efficacy of the herbicide. Saflufenacil at 25 g ai ha−1was applied to field corn in carrier water with one of five initial pH levels (4.0, 5.2, 6.5, 7.7, or 9.0) and then buffered to one of four final solution pH levels (4.0, 6.5, 9.0, or none) for a total of twenty treatments. All treatments included ammonium sulfate at 20.37 g L−1and methylated seed oil at 1% v/v. Generally, saflufenacil with a final solution pH of 6.5 or higher provided more dry weight reduction of corn than saflufenacil applied in a final pH of 5.2 or lower. When applying saflufenacil in water with an initial pH of 4.0 or 5.2, efficacy was increased by raising the final solution pH to either 6.5 or 9.0. Conversely, reduction in corn dry weight was less when solution pH of saflufenacil mixed in carrier water with an initial pH of 6.5 or 7.7 was lowered to a final pH of 4.0. When co-applying saflufenacil with herbicides that are very acidic, such as glyphosate, efficacy of saflufenacil may be reduced if solution pH is 5.2 or lower.


2003 ◽  
Vol 807 ◽  
Author(s):  
Abdesselam Abdelouas ◽  
Karine Ferrand ◽  
Bernd Grambow ◽  
Thierry Mennecart ◽  
Massoud Fattahi ◽  
...  

ABSTRACTCorrosion experiments with the French borosilicate glass SON 68 were conducted under gamma (60Co source) and alpha (cyclotron) irradiation conditions. Static tests with glass powder were conducted at 90°C under saturation conditions with synthetic solutions rich in Si, B and Na. The initial pH was 9.8 and the SA/V was 3970 m−1. For gamma irradiation tests with the highest dose (∼ 58000 Gy) the pH decreased by almost a unit, which lasted for two weeks. The ion-exchange between glass and solution was enhanced as evidenced by the increase of the Li-normalized mass loss within 93 days. The measured H2O2 concentration in the experiment with the glass was as high as 1.51 10−5. The alpha irradiation tests with a total dose of 1800 Gy did not affect the solution pH and therefore the leaching rate of the glass remained similar to that in the blank experiment after 59 days. However, the measured H2O2 concentration was as high as 2.32 10−5. This work indicates that high irradiation doses may enhance the ion-exchange process due to the pH decrease.


2021 ◽  
Vol 11 (6) ◽  
pp. 2777
Author(s):  
Taehoon Kim ◽  
Byungryul An

In this paper, the effect of hydrogen ions on the adsorption onto granular activated carbon (GAC) with the inorganic contaminant phosphate, which exists as a form of four species depending on the solution pH, is investigated. Various batch isotherm and kinetic experiments were conducted in an initial pH 4 as an acid, a pH 7 as neutral, and a pH 9 solution as a base for the GAC conditioned with deionized water and hydrochloric acid, referred to as GAC and GACA, respectively. The physical properties, such as the total surface area, pore volume, pore size distribution, and weight of the element, obtained from Brunauer–Emmett–Teller (BET) and scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM–EDX) represent no significant differences. However, the hydrochloric acid (HCl) condition results in an alteration of the pH of the point of zero charge from 4.5 to 6.0. The optimized initial pH was determined as being acid for the GAC and as being neutral for the GACA. According to the Langmuir isotherm, the relatively high Qm was obtained as being acid for the GAC and clearly distinguishes the pH effect as being the base for the GACA. An attempt was made to assess the adsorption mechanism using the pseudo-first-order (PFO), the pseudo-second-order (PSO), and the intraparticle diffusion models. The higher R2 for the PSO in the entire pH range indicated that chemisorption was predominant for phosphate adsorption, and the pH did not change the adsorption mechanism. A prolonged Bed Volume (BV) for the GACA demonstrated that the hydrogen ions on the surface of the GAC enhanced phosphate adsorption.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 44 ◽  
Author(s):  
Jun Zhang ◽  
Renjian Deng ◽  
Bozhi Ren ◽  
Mohammed Yaseen ◽  
Andrew Hursthouse

To remove antimony (Sb) ions from water, a novel composite adsorbent was fabricated from ferriferous oxide and waste sludge from a chemical polishing process (Fe3O4@HCO) and encapsulated in sodium alginate (SAB). The SAB adsorbent performed well with 80%–96% removal of Sb (III) ions within a concentration range of 5–60 mg/L. The adsorption mechanism of Sb (III) was revealed to be the synergy of chemisorption (ion exchange) and physisorption (diffusion reaction). The adsorption isotherms and kinetics conformed to the Langmuir isotherm and the pesudo-second-order kinetic model. Both initial pH and temperature influenced the adsorption performance with no collapse of microbeads within solution pH range 3–7. Most importantly for practical applications, these microspheres can be separated and recovered from aqueous solution by a magnetic separation technology to facilitate large-scale treatment of antimony-containing wastewater.


2020 ◽  
Vol 20 (3) ◽  
pp. 1072-1082
Author(s):  
Qianshu Sun ◽  
Shuang Zhao ◽  
Yubo Yan ◽  
Wenlin Jia ◽  
Weihua Yang

Abstract As one of the drinking water sources for Xuzhou city, Yuquan River has been polluted seriously in recent years. In this paper, enhanced coagulation technology was selected and various parameters (coagulant species, dosage, solution pH and coagulant aid species) were optimized for Yuquan River water treatment. Turbidity and UV254 removal rate were calculated to assess coagulation efficiencies, and meanwhile floc generation kinetics, zeta potential and scanning electron microscope (SEM) spectra were measured to study the coagulation mechanism. Results indicated that the coagulation effect of polyaluminium chloride (PAC) on Yuquan River water was better than that of aluminium sulphate (AS), and its optimal dosage was 20 mg/L. Flocs produced by PAC also exhibited larger size and faster growth velocity than those of AS. Moreover, the applicable initial pH range for Yuquan River was 6.0–9.0, and the optimal coagulation efficiency was observed at pH 7.0. When PAC or AS was selected as coagulant, the application of sodium alginate (SA) could improve turbidity and UV254 removal due to its adsorption bridging role. In addition, coagulation efficiency could be enhanced in an AS coagulation system when polyacrylamide (PAM) was dosed as coagulant aid.


2019 ◽  
Vol 33 (4) ◽  
pp. 547-554 ◽  
Author(s):  
Thomas C Mueller ◽  
Lawrence E Steckel

AbstractThe pH of spray mixtures is an important attribute that affects dicamba volatility under field conditions. This report examined the effect of different components added to water sources that ranged in initial pH from 4.6 to 8.4. Commercial products were used, which include formulations of dicamba, glyphosate, the drift retardant Intact, ammonium sulfate (AMS), and several pH modifiers. Adding BAPMA salt of dicamba always increased the mixture pH, whereas diglycolamine + VaporGrip® (DGA+VG) had a mixed response. The addition of AMS decreased pH slightly (usually <0.5 pH unit), whereas the addition of potassium salt of glyphosate (GLY-K) always decreased the measured pH (from 1.0 to 2.1 pH units). A substantial pH change could have profound effects on dicamba volatility. Moreover, the 1.0 to 2.1 pH units would not be consistent with the registrant’s report stating that GLY-K decreased mixtures with DGA+VG pH by only 0.2 to 0.3 units. The drift retardant Intact had no effect on pH. There was no difference in resultant pH when comparing K salt and isopropylamine (IPA) salts of glyphosate. Spray carrier volume, ranging from 94 to 187 L ha–1, had only a minor effect on measured pH after the addition of various spray components. The addition of selected pH modifiers raised the pH above 5.0, which is a critical value according to the latest dicamba application labels. The order of mixing of various pH modifiers, including AMS, had only limited effect on measured spray solution pH.


2014 ◽  
Vol 804 ◽  
pp. 59-62
Author(s):  
Lian Ai ◽  
Xue Gang Luo ◽  
Xiao Yan Lin

Low cost agricultural by-products are potential materials for water pollution treatment such as removal of radionuclide. This paper deals with removal of strontium ions from aqueous solution using sunflower stem (SFS) and leaf (SFL). Batch sorption experiments were performed as a function of initial solution pH, adsorbent dosage and initial strontium (II) concentration. The removal efficiency of strontium (II) increased with initial pH and achieved maximum values at a pH range of 4.0-7.0 both for SFS and SFL. The isotherm adsorption data was modeled best by the nonlinear Langmuir-Freundlich equation. The maximum sorption capacity of SFS and SFL were observed to be 17.87 and 22.31 mg/g under optimal conditions, respectively.


2019 ◽  
Author(s):  
Chem Int

The kinetics of oxidation of methyl orange by vanadium(V) {V(V)} has been investigated in the pH range 2.3-3.79. In this pH range V(V) exists both in the form of decavanadates and VO2+. The kinetic results are distinctly different from the results obtained for the same reaction in highly acidic solution (pH &lt; 1) where V(V) exists only in the form of VO2+. The reaction obeys first order kinetics with respect to methyl orange but the rate has very little dependence on total vanadium concentration. The reaction is accelerated by H+ ion but the dependence of rate on [H+] is less than that corresponding to first order dependence. The equilibrium between decavanadates and VO2+ explains the different kinetic pattern observed in this pH range. The reaction is markedly accelerated by Triton X-100 micelles. The rate-[surfactant] profile shows a limiting behavior indicative of a unimolecular pathway in the micellar pseudophase.


2014 ◽  
Vol 79 (7) ◽  
pp. 815-828 ◽  
Author(s):  
Nikola Ilic ◽  
Slavica Lazarevic ◽  
Vladana Rajakovic-Ognjanovic ◽  
Ljubinka Rajakovic ◽  
Djordje Janackovic ◽  
...  

The sorption of inorganic arsenic species, As(III) and As(V), from water by sepiolite modified with hydrated iron(III) oxide was investigated at 25 ?C through batch studies. The influence of the initial pH value, the initial As concentrations, the contact time and types of water on the sorption capacity was investigated. Two types of water were used, deionized and groundwater. The maximal sorption capacity for As(III) from deionized water was observed at initial and final pH value 7.0, while the bonding of As(V) was observed to be almost pH independent for pH value in the range from 2.0 to 7.0, and the significant decrease in the sorption capacity was observed at pH values above 7.0. The sorption capacity at initial pH 7.0 was about 10 mg g?1 for As(III) and 4.2 mg g?1 for As(V) in deionized water. The capacity in groundwater was decreased by 40 % for As(III) and by 20 % for As(V). The Langmuir model and pseudo-second order kinetic model revealed good agreement with the experimental results. The results show that Fe(III)-modified sepiolite exhibits significant affinity for arsenic removal and it has a potential for the application in water purification processes.


2021 ◽  
pp. 1-8
Author(s):  
Marina Gullo Augusto ◽  
Tamires Maria de Andrade Santos ◽  
Taís Scaramucci ◽  
Idalina Vieira Aoki ◽  
Carlos Rocha Gomes Torres ◽  
...  

This study investigated the protective effect of experimental solutions containing 4 polymers (polyoxirane, hydroxypropylmethylcellulose [HPMC], pectin, and an amino methacrylate copolymer [AMC]) in 2 concentrations (low and high) associated or not with sodium fluoride (F; 225 ppm F<sup>–</sup>) or sodium fluoride plus stannous chloride (FS; 800 ppm Sn<sup>2+</sup>) on the dissolution of hydroxyapatite crystals (HA). Deionized water was the control. The pretreated HA was added to a 0.3% citric acid solution (pH 3.8). An automatic titrant machine added aliquots of 0.1 N HCl at a rate of 28 μL/min, in a total reaction time of 5 min. Groups were compared with 2-way ANOVA and Tukey’s test, and concentrations with Student <i>t</i> test (5%). The zeta potential of the HA treated with the solutions was measured. Significant differences were found for both factors and interaction (<i>p</i> &#x3c; 0.0001). The treatments with F and FS solutions resulted in a lower amount of dissolved HA than the control. Among the polymers’ solutions, only AMC was able to reduce the amount of dissolved HA, changing the surface charge of HA to positive. AMC improved the protective effect of F, but it did not affect FS. Polyoxirane and HPMC reduced the protective potential of the FS solution. No differences were found between the concentrations of the polymers. It was concluded that F and FS reduced the amount of dissolved HA. The protective effect of the experimental solutions against HA dissolution was polymer dependent. The F effect was enhanced by its combination with AMC, but the protection of FS was impaired by polyoxirane and HPMC.


Sign in / Sign up

Export Citation Format

Share Document