scholarly journals Rethinking the Rites Controversy: Kilian Stumpf's Acta Pekinensia and the Historical Dimensions of a Religious Quarrel

2020 ◽  
pp. 1-25
Author(s):  
Gianamar Giovannetti-Singh

The Chinese rites controversy (c.1582–1742) is typically characterized as a religious quarrel between different Catholic orders over whether it was permissible for Chinese converts to observe traditional rites and use the terms tian and shangdi to refer to the Christian God. As such, it is often argued that the conflict was shaped predominantly by the divergent theological attitudes between the rites-supporting Jesuits and their anti-rites opponents towards “accommodation.” By examining the Jesuit missionary Kilian Stumpf's Acta Pekinensia—a detailed chronicle of the papal legate Charles-Thomas Maillard de Tournon's 1705–6 investigation into the controversy in Beijing—this article proposes that ostensibly religious disputes between Catholic orders consisted primarily of disagreements over ancient Chinese history. Stumpf's text shows that missionaries’ understandings of antiquity were constructed through their interpretations of ancient Chinese books and their interactions with the Kangxi Emperor. The article suggests that the historiographical characterization of the controversy as “religious” has its roots in the Vatican suppression of the rites, which served to erase the historical nature of the conflict exposed in the Acta Pekinensia.

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3090 ◽  
Author(s):  
Furong Zhong ◽  
Chan Shen ◽  
Luming Qi ◽  
Yuntong Ma

Coptis plants (Ranunculaceae) to have played an important role in the prevention and treatment human diseases in Chinese history. In this study, a multi-level strategy based on metabolic and molecular genetic methods was performed for the characterization of four Coptis herbs (C. chinensis, C. deltoidea, C. omeiensis and C. teeta) using high performance liquid chromatography-ultraviolet (HPLC-UV) and restriction site-associated DNA sequencing (RAD-seq) techniques. Protoberberine alkaloids including berberine, palmatine, coptisine, epiberberine, columbamine, jatrorrhizine, magnoflorine and groenlandicine in rhizomes were identified and determined based on the HPLC-UV method. Among them, berberine was demonstrated as the most abundant compound in these plants. RAD-seq was applied to discover single nucleotide polymorphisms (SNPs) data. A total of 44,747,016 reads were generated and 2,443,407 SNPs were identified in regarding to four plants. Additionally, with respect to complicated metabolic and SNP data, multivariable statistical methods of principal component analysis (PCA) and hierarchical cluster analysis (HCA) were successively applied to interpret the structure characteristics. The metabolic variation and genetic relationship among different Coptis plants were successfully illustrated based on data visualization. Summarily, this comprehensive strategy has been proven as a reliable and effective approach to characterize Coptis plants, which can provide additional information for their quality assessment.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
John P. Robinson ◽  
J. David Puett

Much work has been reported on the chemical, physical and morphological properties of urinary Tamm-Horsfall glycoprotein (THG). Although it was once reported that cystic fibrotic (CF) individuals had a defective THG, more recent data indicate that THG and CF-THG are similar if not identical.No studies on the conformational aspects have been reported on this glycoprotein using circular dichroism (CD). We examined the secondary structure of THG and derivatives under various conditions and have correlated these results with quaternary structure using electron microscopy.THG was prepared from normal adult males and CF-THG from a 16-year old CF female by the method of Tamm and Horsfall. CF female by the method of Tamm and Horsfall.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


Sign in / Sign up

Export Citation Format

Share Document