scholarly journals DEPTOR is a direct p53 target that suppresses cell growth and chemosensitivity

2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Danrui Cui ◽  
Xiaoqing Dai ◽  
Longyuan Gong ◽  
Xiaoyu Chen ◽  
Linchen Wang ◽  
...  

AbstractDEP-domain containing mTOR-interacting protein (DEPTOR), a natural mTOR inhibitor, has essential roles in several processes, including cell growth, metabolism, apoptosis, and immunity. DEPTOR expression has been shown to be diversely controlled at transcriptional levels in cell- and context-specific manners. However, whether there is a general mechanism for the regulation of DEPTOR expression remains largely unknown. Here, we report that DEPTOR is a downstream target of the tumor suppressor, p53, whose activity is positively correlated with DEPTOR expression both in vitro in cell cultures and in vivo in mouse tissues. Mechanistically, p53 directly binds to the DEPTOR promoter and transactivates its expression. Depletion of the p53-binding site on the DEPTOR promoter by CRISPR-Cas9 technology decreases DEPTOR expression and promotes cell proliferation and survival by activating AKT signaling. Importantly, inhibition of AKT by small molecular inhibitors or genetic knockdown abrogates the induction of cell growth and survival induced by deletion of the p53-binding region on the DEPTOR promoter. Furthermore, p53, upon activation by the genotoxic agent doxorubicin, induces DEPTOR expression, leading to cancer cell resistance to doxorubicin. Together, DEPTOR is a direct p53 downstream target and contributes to p53-mediated inhibition of cell proliferation, survival, and chemosensitivity.

1995 ◽  
Vol 128 (6) ◽  
pp. 1197-1208 ◽  
Author(s):  
I Västrik ◽  
A Kaipainen ◽  
T L Penttilä ◽  
A Lymboussakis ◽  
R Alitalo ◽  
...  

Mad is a basic region helix-loop-helix leucine zipper transcription factor which can dimerize with the Max protein and antagonize transcriptional activation by the Myc-Max transcription factor heterodimer. While the expression of Myc is necessary for cell proliferation, the expression of Mad is induced upon differentiation of at least some leukemia cell lines. Here, the expression of the mad gene has been explored in developing mouse tissues. During organogenesis in mouse embryos mad mRNA was predominantly expressed in the liver and in the mantle layer of the developing brain. At later stages mad expression was detected in neuroretina, epidermis, and whisker follicles, and in adult mice mad was expressed at variable levels in most organs analyzed. Interestingly, in the skin mad was highly expressed in the differentiating epidermal keratinocytes, but not in the underlying proliferating basal keratinocyte layer. Also, in the gut mad mRNA was abundant in the intestinal villi, where cells cease proliferation and differentiate, but not in the crypts, where the intestinal epithelial cells proliferate. In the testis, mad expression was associated with the completion of meiosis and early development of haploid cells. In cell culture, Mad inhibited colony formation of a mouse keratinocyte cell line and rat embryo fibroblast transformation by Myc and Ras. The pattern of mad expression in tissues and its ability to inhibit cell growth in vitro suggests that Mad can cause the cessation of cell proliferation associated with cell differentiation in vivo.


2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yixin Tong ◽  
Yuan Huang ◽  
Yuchao Zhang ◽  
Xiangtai Zeng ◽  
Mei Yan ◽  
...  

AbstractAt present, colorectal cancer (CRC) has become a serious threat to human health in the world. Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase that may be involved in several physiological processes. However, whether DPP3 affects the development and progression of CRC remains a mystery. This study is the first to demonstrate the role of DPP3 in CRC. Firstly, the results of immunohistochemistry analysis showed the upregulation of DPP3 in CRC tissues compared with normal tissues, which is statistically analyzed to be positively correlated with lymphatic metastasis, pathological stage, positive number of lymph nodes. Moreover, the high expression of DPP3 predicts poor prognosis in CRC patients. In addition, the results of cell dysfunction experiments clarified that the downregulation of DPP3 significantly inhibited cell proliferation, colony formation, cell migration, and promoted apoptosis in vitro. DPP3 depletion could induce cell apoptosis by upregulating the expression of BID, BIM, Caspase3, Caspase8, HSP60, p21, p27, p53, and SMAC. In addition, downregulation of DPP3 can reduce tumorigenicity of CRC cells in vivo. Furthermore, CDK1 is determined to be a downstream target of DPP3-mediated regulation of CRC by RNA-seq, qPCR, and WB. The interaction between DPP3 and CDK1 shows mutual regulation. Specifically, downregulation of DPP3 can accentuate the effects of CDK1 knockdown on the function of CRC cells. Overexpression of CDK1 alleviates the inhibitory effects of DPP3 knockdown in CRC cells. In summary, DPP3 has oncogene-like functions in the development and progression of CRC by targeting CDK1, which may be an effective molecular target for the prognosis and treatment of CRC.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 758-758
Author(s):  
◽  
Fatima Al-Shahrour ◽  
Kimberly A. Hartwell ◽  
Lisa P Chu ◽  
Jaras Marcus ◽  
...  

Abstract Abstract 758 Primary leukemia stem cells (LSCs) reside in an in vivo microenvironment that supports the growth and survival of malignant cells. Despite the increasing understanding of the importance of niche interactions and primary cell biology in leukemia, many studies continue to focus on cell autonomous processes in artificial model systems. The majority of strategies to-date that attempt to define therapeutic targets in leukemia have relied on screening cell lines in culture; new strategies should incorporate the use of primary disease within a physiologic niche. Using a primary murine MLL-AF9 acute myeloid leukemia (AML) model highly enriched for LSCs, we performed an in vivo short hairpin RNA (shRNA) screen to identify novel genes that are essential for leukemia growth and survival. LSCs infected with pools of shRNA lentivirus were transplanted and grown in recipient mice for 2 weeks, after which bone marrow and spleen cells were isolated. Massively parallel sequencing of infected LSCs isolated before and after transplant was used to quantify the changes in shRNA representation over time. Our in vivo screens were highly sensitive, robust, and reproducible and identified a number of positive controls including genes required for MLL-AF9 transformation (Ctnnb1, Mef2c, Ccna1), genes universally required for cell survival (Ube2j2, Utp18), and genes required in other AML models (Myb, Pbx1, Hmgb3). In our primary and validation screens, multiple shRNAs targeting Integrin Beta 3 (Itgb3) were consistently depleted by more than 20-fold over two weeks in vivo. Follow up studies using RNA interference (RNAi) and Itgb3−/− mice identified Itgb3 as essential for murine leukemia cells growth and transformation in vivo, and loss of Itgb3 conferred a statistically significant survival advantage to recipient mice. Importantly, neither Itgb3 knockdown or genetic loss impaired normal hematopoietic stem and progenitor cell (HSPC) function in 16 week multilineage reconstitution assays. We further identified Itgav as the heterodimeric partner of Itgb3 in our model, and found that knockdown of Itgav inhibited leukemia cell growth in vivo. Consistent the therapeutic aims or our study, flow cytometry on primary human AML samples revealed ITGAV/ITGB3 heterodimer expression. To functionally assess the importance of gene expression in a human system, we performed another RNAi screen on M9 leukemia cells, primary human cord blood CD34+ cells transduced with MLL-ENL that are capable of growing in vitro or in a xenotransplant model in vivo. We found that ITGB3 loss inhibited M9 cell growth in vivo, but not in vitro, consistent with the importance of ITGB3 in a physiologic microenvironment. We explored the signaling pathways downstream of Itgb3 using an additional in vivo, unbiased shRNA screen and identified Syk as a critical mediator of Itgb3 activity in leukemia. Syk knockdown by RNAi inhibited leukemia cell growth in vivo; downregulation of Itgb3 expression resulted in decreased levels of Syk phosphorylation; and expression of an activated form of Syk, TEL-SYK, rescued the effects of Itgb3 knockdown on leukemia cell growth in vivo. To understand cellular processes controlled by Itgb3, we performed gene expression studies and found that, in leukemia cells, Itgb3 knockdown induced differentiation and inhibited multiple previously published LSC transcriptional programs. We confirmed these results using primary leukemia cell histology and a model system of leukemia differentiation. Finally, addition of a small molecule Syk inhibitor, R406, to primary cells co-cultured with bone marrow stroma caused a dose-dependent decrease in leukemia cell growth. Our results establish the significance of the Itgb3 signaling pathway, including Syk, as a potential therapeutic target in AML, and demonstrate the utility of in vivo RNA interference screens. Disclosures: Armstrong: Epizyme: Consultancy.


2020 ◽  
Vol 52 (2) ◽  
pp. 168-179 ◽  
Author(s):  
Huilin Gong ◽  
Shan Gao ◽  
Chenghuan Yu ◽  
Meihe Li ◽  
Ping Liu ◽  
...  

Abstract Y-box binding protein 1 (YB-1) is manifested as its involvement in cell proliferation and differentiation and malignant cell transformation. Overexpression of YB-1 is associated with glioma progression and patient survival. The aim of this study is to investigate the influence of YB-1 knockdown on glioma cell progression and reveal the mechanisms of YB-1 knockdown on glioma cell growth, migration, and apoptosis. It was found that the knockdown of YB-1 decreased the mRNA and protein levels of YB-1 in U251 glioma cells. The knockdown of YB-1 significantly inhibited cell proliferation, colony formation, and migration in vitro and tumor growth in vivo. Proteome and phosphoproteome data revealed that YB-1 is involved in glioma progression through regulating the expression and phosphorylation of major proteins involved in cell cycle, adhesion, and apoptosis. The main regulated proteins included CCNB1, CCNDBP1, CDK2, CDK3, ADGRG1, CDH-2, MMP14, AIFM1, HO-1, and BAX. Furthermore, it was also found that YB-1 knockdown is associated with the hypo-phosphorylation of ErbB, mTOR, HIF-1, cGMP-PKG, and insulin signaling pathways, and proteoglycans in cancer. Our findings indicated that YB-1 plays a key role in glioma progression in multiple ways, including regulating the expression and phosphorylation of major proteins associated with cell cycle, adhesion, and apoptosis.


2015 ◽  
Vol 11 (7) ◽  
pp. 2051-2059 ◽  
Author(s):  
Junchao Huang ◽  
Chengchao Sun ◽  
Suqing Wang ◽  
Qiqiang He ◽  
Dejia Li

Anti-miR-10b inhibits lung cancer cell growth and induces apoptosis in vitro and in vivo.


2020 ◽  
Author(s):  
Yue Chang ◽  
Min Hao ◽  
Ru Jia ◽  
Yihui Zhao ◽  
Yixuan Cai ◽  
...  

Abstract Background: Endometrial cancer is an invasive gynecological cancer prevalent in the world. The pathogenesis of endometrial cancer is related to multiple levels of regulation, referring to oestrogen, tumor-suppressor gene (e.g. PTEN ) or microRNAs (e.g. miR-23a and miR-29b). Metapristone is a hormone-related drug, which is widely used in clinical treatment of endometrial cancer. However, the underlying regulatory mechanism of metapristone on endometrial cancer is still unclear, especially the regulatory effect on microRNAs. The aim of this study is to investigate the specific molecular mechanism of metapristone regulating microRNAs in the treatment of endometrial cancer. Methods: RL95-2 cells and Ishikawa cells were used as the endometrial cancer models. MiR-492 or si-miR-492 was transfected into RL95-2 cells and Ishikawa cells to explore the role of miR-492 in endometrial cancer. The cell cancer model and mice cancer model were used to confirm the function and mechanism of metapristone affected on endometrial cancer in vitro and in vivo . Mechanically, cell proliferation was monitored using the MTT assay, cell colony formation assay and EdU assay. Luciferase reporter assay was used to identify the downstream target gene of miR492. The protein expression and RNA expression were respectively measured by western blot and qRT-PCR for cell signaling pathway research, subsequently, were verified in the mice tumor model via immunohistochemistry. Results: Metapristone as a kind of hormone-related drug significantly inhibited the endometrial cancer cell growth through regulating cell apoptosis-related gene expression. Mechanically, miR-492 and its target genes Klf5 and Nrf1 were highly expressed in the endometrial cancer cell lines, which promoted cell proliferation and inhibited cell apoptosis. Metapristone decreased the expression of miR-492 and its target genes Klf5 and Nrf1 , leading to endometrial cancer cell growth inhibition in vitro and in vivo . Conclusion: Metapristone inhibited the endometrial cancer cell growth through regulating the cell apoptosis-related signaling pathway and decreasing the expression of miR-492 and its downstream target genes ( Klf5 and Nrf1 ), which provided the theoretical basis in clinical treatment of endometrial cancer.


2020 ◽  
Vol 98 (5) ◽  
pp. 556-564
Author(s):  
Jubo Wang ◽  
Yu Quan ◽  
Jian Lv ◽  
Quan Dong ◽  
Shouping Gong

Glioma is a type of brain tumor that is common globally, and is associated with a variety of genetic changes. It has been reported that isocitrate dehydrogenase 1 (IDH1) is overexpressed in glioma and in HeLa cells. The lncRNA IDH1-AS1 is believed to interact with IDH1, and when IDH1-AS1 is overexpressed, HeLa cell proliferation is inhibited. However, the effects of IDH1-AS1 on glioma were relatively unknown. The results from this work show that IDH1-AS1 is downregulated in the glioma tissues. We used primary glioblastoma cell lines U251 and U87-MG to study the effects of IDH1-AS1 on glioma cell growth, in vitro and in vivo. We found that when IDH1-AS1 is overexpressed cell proliferation is inhibited, cell cycle is arrested at the G1 phase, and the protein expression levels of cyclinD1, cyclinA, cyclinE, CDK2, and CDK4 are decreased. We found that cell apoptosis was increased when IDH1-AS1 was overexpressed, as evidenced by increases in the levels of cleaved caspase-9 and -3. Conversely, knockdown of IDH1-AS1 promoted cell proliferation. Moreover, we proved that overexpression of IDH1-AS1 inhibits the tumorigenesis of U251 cells, in vivo. Furthermore, IDH1-AS1 did not affect IDH1 protein expression, but altered its enzymatic activities in glioma cells. Silencing of IDH1 reversed the effects of IDH1-AS1 upregulation on cell viability. Hence, our study provides first-hand evidence for the effects of lncRNA IDH1-AS1 on gliomas. Because overexpressing IDH1-AS1 inhibited cell growth, IDH1-AS1 could also be considered as a potential target for glioma treatment.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14659-e14659
Author(s):  
Ankur Sheel ◽  
SuetYan Kwan ◽  
Wen Xue

e14659 Background: Hepatocellular carcinoma (HCC) is an aggressive subtype of liver cancer with few effective treatments. Moreover, the underlying mechanisms that drive HCC pathogenesis remain poorly characterized. Identifying genes and pathways essential for HCC cell growth will aid the development of new targeted therapies for HCC. Furthermore, the P53 pathway is frequently mutated in HCC therefore identifying targets with therapeutic efficacy irrespective of P53 status is warranted. Methods: To identify kinases essential for HCC proliferation, we performed a kinome wide CRISPR screen in human HCC cell lines with varying P53 mutations and validated our findings using CRISPR-Cas9 mediated genetic manipulations in human HCC cell lines in-vitro and in-vivo. Furthermore, we performed an integrated cancer genomics analyses using patient data from TCGA and the NCI to validate the relevancy of our findings. Results: We identified transformation/transcription domain-associated protein (TRRAP) as an essential gene for HCC cell proliferation. we show that depletion of TRRAP or its co-factor, histone acetyltransferase KAT5, inhibits HCC cell growth via induction of P53, P21 and RB-independent senescence in-vitro and in-vivo. Furthermore, we find that TRRAP is upregulated in HCC patient samples independent of TP53 mutations. Integrated cancer genomics analyses using both HCC patient data derived from TCGA and from RNA-sequencing of our in-vitro model identified a chromosomal instability signature that was regulated by TRRAP/KAT5 in-vitro. Furthermore this chromosomal instability signature was also upregulated in HCC patients. Finally, we identify TOP2A as a target in this pathway as genetic depletion of TOP2A inhibited cell growth via induction of senescence. Conclusions: Our results uncover a role for TRRAP/KAT5 in promoting HCC cell proliferation via activation of mitotic genes in order to potentiate a chromosomal instability signature. Our findings suggest that targeting the TRRAP/KAT5 complex and TOP2A is a therapeutic strategy for HCC, even in tumors that have escaped P53 and RB tumor suppressive programs.


2018 ◽  
Vol 38 (1) ◽  
Author(s):  
Qin Li ◽  
Yanhong Feng ◽  
Xu Chao ◽  
Shuai Shi ◽  
Man Liang ◽  
...  

The long non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) has been found to be overexpressed in many human malignancies and involved in tumor progression and metastasis. Although the downstream target through which HOTAIR modulates tumor metastasis is not well-known, evidence suggests that miR-23b might be involved in this event. In the present study, the expressions of HOTAIR and miR-23b were detected by real-time PCR in 33 paired cervical cancer tissue samples and cervical cell lines. The effects of HOTAIR on the expressions of miR-23b and mitogen-activated protein kinase 1 (MAPK1) were studied by overexpression and RNAi approaches. We found that HOTAIR expression was significantly increased in cervical cancer cells and tissues. In contrast, the expression of miR-23b was obviously decreased. We further demonstrated that HOTAIR knockdown promoted apoptosis and inhibited cell proliferation and invasion in vitro and in vivo. Moreover, our data indicated that HOTAIR may competitively bind miR-23b and modulate the expression of MAPK1 indirectly in cervical cancer cells. Taken together, our study has identified a novel pathway through which HOTAIR exerts its oncogenic role, and provided a molecular basis for potential applications of HOTAIR in the prognosis and treatment of cervical cancer.


Sign in / Sign up

Export Citation Format

Share Document