scholarly journals PRMT5-mediated methylation of YBX1 regulates NF-κB activity in colorectal cancer

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Antja-Voy Hartley ◽  
Benlian Wang ◽  
Rasika Mundade ◽  
Guanglong Jiang ◽  
Mengyao Sun ◽  
...  

Abstract The multifunctional protein Y-box binding protein 1 (YBX1), is a critical regulator of transcription and translation, and is widely recognized as an oncogenic driver in several solid tumors, including colorectal cancer (CRC). However, very little is known about the upstream or downstream factors that underlie YBX1′s regulation and involvement in CRC. Previously, we demonstrated that YBX1 overexpression correlated with potent activation of nuclear factor κB (NF-κB), a well-known transcription factor believed to be crucial in CRC progression. Here, we report a novel interaction between NF-κB, YBX1 and protein arginine methyltransferase 5 (PRMT5). Our findings reveal for the first time that PRMT5 catalyzes methylation of YBX1 at arginine 205 (YBX1-R205me2), an event that is critical for YBX1-mediated NF-κB activation and its downstream target gene expression. Importantly, when WT-YBX1 is overexpressed, this methylation exists under basal (unstimulated) conditions and is further augmented upon interleukin-1β (IL-1β) stimulation. Mechanistically, co-immunoprecipitation studies reveal that the R205 to alanine (A) mutant of YBX1 (YBX1-R205A) interacted less well with the p65 subunit of NF-κB and attenuated the DNA binding ability of p65. Importantly, overexpression of YBX1-R205A significantly reduced cell growth, migration and anchorage-independent growth of CRC cells. Collectively, our findings shed important light on the regulation of a novel PRMT5/YBX1/NF-κB axis through PRMT5-mediated YBX1-R205 methylation. Given the fact that PRMT5, YBX1 and NF-κB are all among top crucial factors in cancer progression, pharmacological disruption of this pivotal axis could serve as the basis for new therapeutics for CRC and other PRMT5/YBX1/NF-κB-associated cancers.

2020 ◽  
Author(s):  
Qian Dong ◽  
Xiaoran Long ◽  
Jie Cheng ◽  
Xia Yin ◽  
Wenjing Wang ◽  
...  

Abstract Background Long non-coding RNAs (lncRNA) play critical roles in tumor occurrence and progression, including ovarian cancer (OC). The lncRNA growth arrest-specific transcript 5 (GAS5) has been proved to be an important modulator in the growth and metastasis of OC cells. Our studies confirm that GAS5 is down-regulated in OC; however, the potential molecular mechanism underlying it remains to be elucidated. Results In our study, we demonstrated that the expression levels of GAS5 and PTEN decreased, while miR-96-5p was up-regulated in ovarian cancer samples and cell lines compared with controls. PTEN is the downstream target gene of miR-96-5p. The up-regulation of GAS5 inhibited the expression of miR-96-5p, which directly targets PTEN. GAS5 overexpression can significantly reduce OC cell proliferation and invasion ability via suppression of miR-96-5p expression. PTEN/AKT/mTOR expression had a positive correlation with GAS5 expression. Moreover, miR-96-5p promoted OC progression by mediating PTEN/AKT/mTOR signaling pathway. Conclusion Our study identified GAS5 as a ceRNA which regulates the PTEN/AKT/mTOR axis through sponging miR-96-5p in OC.


2018 ◽  
Vol 38 (1) ◽  
Author(s):  
Shanyang He ◽  
Yunhe Zhao ◽  
Xiaoping Wang ◽  
Yalan Deng ◽  
Zhiyong Wan ◽  
...  

Long non-coding RNA small nucleolar RNA host gene 20 (SNHG20) has been demonstrated to play crucial regulatory roles in many types of cancer. However, the biological function of long ncRNA (lncRNA) SNHG20 in ovarian cancer is still unclear. In the present study, we found that lncRNA SNHG20 was significantly increased in ovarian cancer. In addition, lncRNA SNHG20 knockdown suppressed the ovarian cancer progression, whereas overexpression of SNHG20 showed the opposite effects. Moreover, our results also revealed that lncRNA SNHG20 knockdown inhibited Wnt/β-catenin signaling activity by suppressing β-catenin expression and reversing the downstream target gene expression. Taken together, lncRNA SNHG20 plays an pivotal role in ovarian cancer progression by regulating Wnt/β-catenin signaling.


2022 ◽  
Vol 12 (4) ◽  
pp. 717-723
Author(s):  
Bing Pan ◽  
Binghui Liu ◽  
Juhua Pan ◽  
Jian Xin ◽  
Chenglin Fu

Introduction: Breast cancer (BC) developed in the glandular epithelial tissue of breast. microRNA (miR)-367 is an important player in cancer progression, but has never been studied in BC. This experiment tries to probe the mechanism of miR-367 in BC treatment with downstream target gene. Materials and Methods: Human BC cell lines and healthy breast epithelium cells were applied in this study. After the transfection of miR-367 inhibitor or mimic into BC cells, functional assays were conducted to measure cell growth. Afterwards, flow cytometry was employed in apoptosis verification. Then, target relation between miR-367 and ARID1B was certified. Furthermore, ARID1B level was also measured. Results: miR-367 was underexpressed in human BC cells (p < 0.05). Besides, overexpressed miR-367 inhibited BC cell proliferation and encouraged apoptosis, while underexpressed miR-367 led to an opposite outcome (p < 0.05). This experiment then implied that miR-367 dramatically suppressed the activity of cell transfected with ARID1B-wild type. miR-367 overexpression quenched ARID1B level in BC cells; while silencing miR-367 upregulated ARID1B expression (p < 0.05). Conclusion: Our experiment discovered that miR-367 quenched BC cell growth and promoted apoptosis by targeting ARID1B. This investigation may provide novel insights in BC treatment.


2013 ◽  
Vol 40 (1) ◽  
pp. 43
Author(s):  
Xiao-Meng ZHAO ◽  
Cheng WANG ◽  
Xiao-Feng LI ◽  
Xiao-Ting ZHANG ◽  
Xi-Zhi LIU ◽  
...  

2019 ◽  
Vol 20 (6) ◽  
pp. 625-634 ◽  
Author(s):  
Xun Che ◽  
Wei Dai

AhR is an environmental response gene that mediates cellular responses to a variety of xenobiotic compounds that frequently function as AhR ligands. Many AhR ligands are classified as carcinogens or pro-carcinogens. Thus, AhR itself acts as a major mediator of the carcinogenic effect of many xenobiotics in vivo. In this concise review, mechanisms by which AhR trans-activates downstream target gene expression, modulates immune responses, and mediates malignant transformation and tumor development are discussed. Moreover, activation of AhR by post-translational modifications and crosstalk with other transcription factors or signaling pathways are also summarized.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3437
Author(s):  
Hee Eun Kang ◽  
Yoojeong Seo ◽  
Jun Seop Yun ◽  
Sang Hyun Song ◽  
Dawool Han ◽  
...  

The Wnt and Hippo pathways are tightly coordinated and understanding their reciprocal regulation may provide a novel therapeutic strategy for cancer. Anti-helminthic niclosamide is an effective inhibitor of Wnt and is now in a phase II trial for advanced colorectal cancer (CRC) patients. We found that Axin2, an authentic target gene of canonical Wnt, acts as aYAP phosphorylation activator in APC-mutated CRC. While niclosamide effectively suppresses Wnt, it also inhibits Hippo, limiting its therapeutic potential for CRC. To overcome this limitation, we utilized metformin, a clinically available AMPK activator. This combinatory approach not only suppresses canonical Wnt activity, but also inhibits YAP activity in CRC cancer cells and in patient-derived cancer organoid through the suppression of cancer stemness. Further, combinatory oral administration suppressed in vivo tumorigenesis and the cancer progression of APC-MIN mice models. Our observations provide not only a reciprocal link between Wnt and Hippo, but also clinically available novel therapeutics that are able to target Wnt and YAP in APC-mutated CRC.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Yihua Bei ◽  
Jiahong Xu ◽  
Tianzhao Xu ◽  
Ping Chen ◽  
Lin Che ◽  
...  

Doxorubicin (Dox)-induced cardiotoxicity, usually associated with increased oxidative stress, myofibrillar deterioration, and impaired cardiac contractile function, is a serious complication of antitumor therapy which may not be detected for many years. Growing evidence indicates that the regulation of cardiac microRNA (miRNA, miR) in response to exercise is essentially involved in the protective effect of exercise in the treatment of cardiovascular diseases. However, it is largely unknown whether and how exercise could prevent Dox-induced cardiotoxicity via regulating miRNA biology. In the current study, C57BL/6 mice were either subjected to a 3-week swimming program or remained sedentary. Mice were then treated with Dox (ip. 4 mg/kg/week for 4 weeks) to induce cardiotoxicity. Our data demonstrated that Dox resulted in marked reduction of cardiac ejection fraction (EF, %) and fractional shortening (FS, %) as measured by echocardiography. Interestingly, exercise significantly improved cardiac EF (%) and FS (%) in Dox-treated mice, indicating the protective effect of exercise in Dox-induced cardiotoxicity. Then, we performed microarray analysis (Affymetrix 3.0) showing that miR-27a-5p, miR-34b-3p, miR-185-3p, miR-203-3p, miR-669a-5p, miR-872-3p, and let-7i-3p were significantly reduced, while miR-2137 was increased in the hearts of exercised Dox-treated mice versus sedentary Dox-treated mice (FC(abs)>1.5, p<0.05). Using qRT-PCR, we further verified that miR-669a-5p was reduced by exercise training in Dox-treated mice. These data reveal that miR-669a-5p might be a potential miRNA mimicking the benefit of exercise in Dox-induced cardiotoxicity. Further study is needed to clarify the functional effect of miR-669a-5p and to identify its downstream target gene that contributes to the prevention and treatment of Dox-induced cardiotoxicity.


2021 ◽  
Author(s):  
Chaofan Peng ◽  
Yuqian Tan ◽  
Peng Yang ◽  
Kangpeng Jin ◽  
Chuan Zhang ◽  
...  

Abstract BackgroundEmerging studies have investigated circRNAs as significant regulation factors in multiple cancer progression. Nevertheless, the biological functions and underlying mechanisms of circRNAs in colorectal cancer progression remain unclear.MethodsA novel circRNA (circ-GALNT16) was identified by microarray and qRT-PCR. A series of phenotype experiments in vitro and vivo were performed to investigate the role of circ-GALNT16 in CRC. FISH, RNA pulldown assay, RIP assay, RNA sequencing, coimmunoprecipitation, and ChIP were constructed to explore the molecular mechanisms of circ-GALNT16 in colorectal cancer.ResultsCirc-GALNT16 was downregulated in colorectal cancer and negatively correlated with poor prognosis. Circ-GALNT16 suppressed the proliferation and metastasis ability of colorectal cancer in vitro and vivo. Mechanistically, circ-GALNT16 could bind to the KH3 domain of heterogeneous nuclear ribonucleoprotein K (hnRNPK), which resulted in the SUMOylation of hnRNPK. Additionally, circ-GALNT16 could enhance the hnRNPK-p53 complex by facilitating the SUMOylation of hnRNPK. Furthermore, RNA sequencing assay identified serpin family E member 1 as the target gene of circ-GALNT16 at the transcriptional level. Rescue assays revealed that circ-GALNT16 regulated the expression of Serpine1 by inhibiting the deSUMOylation of hnRNPK mediated by SUMO specific peptidase 2 and then regulating the sequence-specific DNA binding ability of the hnRNPK-p53 transcriptional complex.ConclusionsCirc-GALNT16 suppressed CRC progression via inhibiting Serpine1 expression through adjusting the sequence-specific DNA binding ability of the SENP2-mediated hnRNPK-p53 transcriptional complex and might work as a biomarker and therapeutic target for CRC.


Development ◽  
1997 ◽  
Vol 124 (2) ◽  
pp. 303-311 ◽  
Author(s):  
J. Rusch ◽  
M. Levine

In Drosophila, two TGF-beta growth factors, dpp and screw, function synergistically to subdivide the dorsal ectoderm into two embryonic tissues, the amnioserosa and dorsal epidermis. Previous studies have shown that peak dpp activity is required for the localized expression of zerknullt (zen), which encodes a homeodomain transcription factor. We present evidence that zen directly activates the amnioserosa-specific expression of a downstream target gene, Race (Related to angiotensin converting enzyme). A 533 bp enhancer from the Race promoter region is shown to mediate selective expression in the amnioserosa, as well as the anterior and posterior midgut rudiments. This enhancer contains three zen protein binding sites, and mutations in these sites virtually abolish the expression of an otherwise normal Race-lacZ fusion gene in the amnioserosa, but not in the gut. Genetic epistasis experiments suggest that zen is not the sole activator of Race, although a hyperactivated form of zen (a zen-VP16 fusion protein) can partially complement reduced levels of dpp activity. These results suggest that dpp regulates multiple transcription factors, which function synergistically to specify the amnioserosa.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yangyang Li ◽  
Jia Xu ◽  
Jiale Zhang ◽  
Jie Zhang ◽  
Jian Zhang ◽  
...  

Abstract Background Glioma is considered one of the most common tumors and has a poor prognosis. Recently, microRNAs (miRNAs) have been reported to be strongly linked to various human tumors including glioma. In this study, we investigated a new anticancer miRNA, miR-346, to determine the effects and mechanism of miR-346 and its downstream target gene NFIB on tumors. Methods Lentivirus transfection, real-time PCR, western blotting, immunohistochemistry, cell proliferation assays, and mouse experiments were used to examine the relationship between miR-346 and its regulation of NFIB in glioma cells. Results The expression of miR-346 was downregulated in glioma cells. Overexpression of miR-346 arrested the cell cycle of glioma cells and inhibited their proliferation in vitro and in vivo. NFIB was a direct target of miR-346, whose expression was reduced by the miRNA. Overexpression of NFIB reversed all tested functions of miR-346. Conclusion miR-346 inhibited the growth of glioma cells by targeting NFIB and may be a new prognostic and diagnostic biomarker for glioma.


Sign in / Sign up

Export Citation Format

Share Document