scholarly journals Simulation-based optimisation to quantify heterogeneity of specific ventilation and perfusion in the lung by the Inspired Sinewave Test

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. C. Tran ◽  
V. Nguyen ◽  
R. Bruce ◽  
D. C. Crockett ◽  
F. Formenti ◽  
...  

AbstractThe degree of specific ventilatory heterogeneity (spatial unevenness of ventilation) of the lung is a useful marker of early structural lung changes which has the potential to detect early-onset disease. The Inspired Sinewave Test (IST) is an established noninvasive ‘gas-distribution’ type of respiratory test capable of measuring the cardiopulmonary parameters. We developed a simulation-based optimisation for the IST, with a simulation of a realistic heterogeneous lung, namely a lognormal distribution of spatial ventilation and perfusion. We tested this method in datasets from 13 anaesthetised pigs (pre and post-lung injury) and 104 human subjects (32 healthy and 72 COPD subjects). The 72 COPD subjects were classified into four COPD phenotypes based on ‘GOLD’ classification. This method allowed IST to identify and quantify heterogeneity of both ventilation and perfusion, permitting diagnostic distinction between health and disease states. In healthy volunteers, we show a linear relationship between the ventilatory heterogeneity versus age ($${R}^{2}=0.42$$ R 2 = 0.42 ). In a mechanically ventilated pig, IST ventilatory heterogeneity in noninjured and injured lungs was significantly different (p < 0.0001). Additionally, measured indices could accurately identify patients with COPD (area under the receiver operating characteristic curve is 0.76, p < 0.0001). The IST also could distinguish different phenotypes of COPD with 73% agreement with spirometry.

2017 ◽  
Vol 200 (3) ◽  
Author(s):  
Celia Méndez-García ◽  
Coral Barbas ◽  
Manuel Ferrer ◽  
David Rojo

ABSTRACT In 1680, Antonie van Leeuwenhoek noted compositional differences in his oral and fecal microbiota, pioneering the study of the diversity of the human microbiome. From Leeuwenhoek's time to successful modern attempts at changing the gut microbial landscape to cure disease, there has been an exponential increase in the recognition of our resident microbes as part of ourselves. Thus, the human host and microbiome have evolved in parallel to configure a balanced system in which microbes survive in homeostasis with our innate and acquired immune systems, unless disease occurs. A growing number of studies have demonstrated a correlation between the presence/absence of microbial taxa and some of their functional molecules (i.e., genes, proteins, and metabolites) with health and disease states. Nevertheless, misleading experimental design on human subjects and the cost and lack of standardized animal models pose challenges to answering the question of whether changes in microbiome composition are cause or consequence of a certain biological state. In this review, we evaluate the state of the art of methodologies that enable the study of the gut microbiome, encouraging a change in broadly used analytic strategies by choosing effector molecules (proteins and metabolites) in combination with coding nucleic acids. We further explore microbial and effector microbial product imbalances that relate to disease and health.


2010 ◽  
Vol 105 (3) ◽  
pp. 367-372 ◽  
Author(s):  
John C. Fuller ◽  
Rick L. Sharp ◽  
Hector F. Angus ◽  
Shawn M. Baier ◽  
John A. Rathmacher

The leucine metabolite, β-hydroxy-β-methylbutyrate (HMB), is a nutritional supplement that increases lean muscle and strength with exercise and in disease states. HMB is presently available as the Ca salt (CaHMB). The present study was designed to examine whether HMB in free acid gel form will improve HMB availability to tissues. Two studies were conducted and in each study four males and four females were given three treatments in a randomised, cross-over design. Treatments were CaHMB (gelatin capsule, 1 g), equivalent HMB free acid gel swallowed (FASW) and free acid gel held sublingual for 15 s then swallowed (FASL). Plasma HMB was measured for 3 h following treatment in study 1 and 24 h with urine collection in study 2. In both the studies, the times to peak plasma HMB were 128 (sem 11), 38 (sem 4) and 38 (sem 1) min (P < 0·0001) for CaHMB, FASW and FASL, respectively. The peak concentrations were 131 (sem 6), 249 (sem 14) and 239 (sem 14) μmol/l (P < 0·0001) for CaHMB, FASW and FASL, respectively. The areas under the curve were almost double for FASW and FASL (P < 0·0001). Daily urinary HMB excretion was not significantly increased resulting in more HMB retained (P < 0·003) with FASW and FASL. Half-lives were 3·17 (sem 0·22), 2·50 (sem 0·13) and 2·51 (sem 0·14) h for CaHMB, FASW and FASL, respectively (P < 0·004). Free acid gel resulted in quicker and greater plasma concentrations (+185 %) and improved clearance (+25 %) of HMB from plasma. In conclusion, HMB free acid gel could improve HMB availability and efficacy to tissues in health and disease.


PEDIATRICS ◽  
1959 ◽  
Vol 24 (2) ◽  
pp. 225-233
Author(s):  
Maarten S. Sibinga

Using a modification of the Babcock photographic technique, it has been possible to make measurements of the day to day growth of the fingernail in human subjects. There are marked individual variations in the rate of growth at all ages, but for the same individual and the same nail the rate of growth is relatively constant and can be used to study the effect of various physiologic and pathologic disturbances. Preliminary observations indicate that nail growth is unfavorably affected in certain disease states, notably measles and nephrosis. Malnutrition and certain dietary restriction were not found to affect this parameter appreciably. Growth of the nails was followed for 10 days after death and was found to be measurable, the rate exceeding that noted during a severe attack of measles.


2013 ◽  
Vol 12 (3) ◽  
pp. 135-144 ◽  
Author(s):  
Erik R. Swenson

Hypoxic vasoconstriction in the lung is a unique and fundamental characteristic of the pulmonary circulation. It functions in health and disease states to better preserve ventilation-perfusion matching by diverting blood flow to better ventilated regions when local ventilation is compromised. As more areas of lung become hypoxic either with high altitude or global lung disease, then hypoxic pulmonary vasoconstriction (HPV) becomes less effective in ventilation-perfusion matching and can lead to pulmonary hypertension. HPV is intrinsic to the vascular smooth muscle and its mechanisms remain poorly understood. In addition, the pulmonary vascular endothelium, red cells, lung innervation, and numerous circulating vasoactive agents also affect the strength of HPV. This review will discuss the pathophysiology of HPV and address its role in pulmonary hypertension associated with World Health Organization Group 3 diseases. When sustained beyond many hours, HPV may initiate pulmonary vascular remodeling and lead to more fixed and less oxygen-responsive pulmonary hypertension if the hypoxic stimulus is maintained.


2020 ◽  
Vol 27 (29) ◽  
pp. 4840-4854 ◽  
Author(s):  
Chrysoula-Evangelia Karachaliou ◽  
Hubert Kalbacher ◽  
Wolfgang Voelter ◽  
Ourania E. Tsitsilonis ◽  
Evangelia Livaniou

Prothymosin alpha (ProT&#945;) is a highly acidic polypeptide, ubiquitously expressed in almost all mammalian cells and tissues and consisting of 109 amino acids in humans. ProT&#945; is known to act both, intracellularly, as an anti-apoptotic and proliferation mediator, and extracellularly, as a biologic response modifier mediating immune responses similar to molecules termed as “alarmins”. Antibodies and immunochemical techniques for ProT&#945; have played a leading role in the investigation of the biological role of ProT&#945;, several aspects of which still remain unknown and contributed to unraveling the diagnostic and therapeutic potential of the polypeptide. This review deals with the so far reported antibodies along with the related immunodetection methodology for ProT&#945; (immunoassays as well as immunohistochemical, immunocytological, immunoblotting, and immunoprecipitation techniques) and its application to biological samples of interest (tissue extracts and sections, cells, cell lysates and cell culture supernatants, body fluids), in health and disease states. In this context, literature information is critically discussed, and some concluding remarks are presented.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2428
Author(s):  
Małgorzata Guz ◽  
Witold Jeleniewicz ◽  
Anna Malm ◽  
Izabela Korona-Glowniak

A still growing interest between human nutrition in relation to health and disease states can be observed. Dietary components shape the composition of microbiota colonizing our gastrointestinal tract which play a vital role in maintaining human health. There is a strong evidence that diet, gut microbiota and their metabolites significantly influence our epigenome, particularly through the modulation of microRNAs. These group of small non-coding RNAs maintain cellular homeostasis, however any changes leading to impaired expression of miRNAs contribute to the development of different pathologies, including neoplastic diseases. Imbalance of intestinal microbiota due to diet is primary associated with the development of colorectal cancer as well as other types of cancers. In the present work we summarize current knowledge with particular emphasis on diet-microbiota-miRNAs axis and its relation to the development of colorectal cancer.


2017 ◽  
Author(s):  
Sean M. Kearney ◽  
Sean M. Gibbons ◽  
Mathilde Poyet ◽  
Thomas Gurry ◽  
Kevin Bullock ◽  
...  

AbstractEndospore-formers in the human microbiota are well adapted for host-to-host transmission, and an emerging consensus points to their role in determining health and disease states in the gut. The human gut, more than any other environment, encourages the maintenance of endospore formation, with recent culture-based work suggesting that over 50% of genera in the microbiome carry genes attributed to this trait. However, there has been limited work on the ecological role of endospores and other stress-resistant cellular states in the human gut. In fact, there is no data to indicate whether organisms with the genetic potential to form endospores actually form endosporesin situand how sporulation varies across individuals and over time. Here, we applied a culture-independent protocol to enrich for endospores and other stress-resistant cells in human feces to identify variation in these states across people and within an individual over time. We see that cells with resistant states are more likely than those without to be shared among multiple individuals, which suggests that these resistant states are particularly adapted for cross-host dissemination. Furthermore, we use untargeted fecal metabolomics in 24 individuals and within a person over time to show that these organisms respond to shared environmental signals, and in particular, dietary fatty acids, that likely mediate colonization of recently disturbed human guts.


2006 ◽  
Vol 110 (2) ◽  
pp. 167-173 ◽  
Author(s):  
Moses V. Chao ◽  
Rithwick Rajagopal ◽  
Francis S. Lee

Neurotrophins are a unique family of polypeptide growth factors that influence the proliferation, differentiation, survival and death of neuronal and non-neuronal cells. They are essential for the health and well-being of the nervous system. NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor), NT-3 (neurotrophin-3) and NT-4 (neurotrophin-4) also mediate additional higher-order activities, such as learning, memory and behaviour, in addition to their established functions for cell survival. The effects of neurotrophins depend upon their levels of availability, their affinity of binding to transmembrane receptors and the downstream signalling cascades that are stimulated after receptor activation. Alterations in neurotrophin levels have been implicated in neurodegenerative disorders, such as Alzheimer's disease and Huntington's disease, as well as psychiatric disorders, including depression and substance abuse. Difficulties in administering trophic factors have led to the consideration of using small molecules, such as GPCR (G-protein-coupled receptor) ligands, which can participate in transactivation events. In this review, we consider the signalling pathways activated by neurotrophins in both health and disease states.


2018 ◽  
Vol 43 (11) ◽  
pp. 1122-1130 ◽  
Author(s):  
Baraa K. Al-Khazraji ◽  
J. Kevin Shoemaker

The autonomic nervous system elicits continuous beat-by-beat homeostatic adjustments to cardiovascular control. These modifications are mediated by sensory inputs (e.g., baroreceptors, metaboreceptors, pulmonary, thermoreceptors, and chemoreceptors afferents), integration at the brainstem control centres (i.e., medulla), and efferent autonomic neural outputs (e.g., spinal, preganglionic, and postganglionic pathways). However, extensive electrical stimulation and functional imaging research show that the brain’s higher cortical regions (e.g., insular cortex, medial prefrontal cortex, anterior cingulate cortex) partake in homeostatic regulation of the cardiovascular system at rest and during exercise. We now appreciate that these cortical areas form a network, namely the “cortical autonomic network” (CAN), which operate as part of a larger central autonomic network comprising 2-way communication of cortical and subcortical areas to exert autonomic influence. Interestingly, differential patterns of CAN activity and ensuing cardiovascular control are present in disease states, thereby highlighting the importance of considering the role of CAN as an integral aspect of cardiovascular regulation in health and disease. This review discusses current knowledge on human cortical autonomic activation during volitional exercise, and the role of exercise training on this activation in both health and disease.


2021 ◽  
Vol 39 (1) ◽  
Author(s):  
Julie Y. Zhou ◽  
Brian A. Cobb

The surfaces of all living organisms and most secreted proteins share a common feature: They are glycosylated. As the outermost-facing molecules, glycans participate in nearly all immunological processes, including driving host-pathogen interactions, immunological recognition and activation, and differentiation between self and nonself through a complex array of pathways and mechanisms. These fundamental immunologic roles are further cast into sharp relief in inflammatory, autoimmune, and cancer disease states in which immune regulation goes awry. Here, we review the broad impact of glycans on the immune system and discuss the changes and clinical opportunities associated with the onset of immunologic disease. Expected final online publication date for the Annual Review of Immunology, Volume 39 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document