Endoplasmic reticulum stress/autophagy pathway is involved in diabetes-induced neuronal apoptosis and cognitive decline in mice

2018 ◽  
Vol 132 (1) ◽  
pp. 111-125 ◽  
Author(s):  
Fei-Juan Kong ◽  
Lei-Lei Ma ◽  
Jun-Jie Guo ◽  
Lin-Hao Xu ◽  
Yun Li ◽  
...  

Diabetes mellitus is a significant global public health problem depicting a rising prevalence worldwide. As a serious complication of diabetes, diabetes-associated cognitive decline is attracting increasing attention. However, the underlying mechanisms are yet to be fully determined. Both endoplasmic reticulum (ER) stress and autophagy have been reported to modulate neuronal survival and death and be associated with several neurodegenerative diseases. Here, a streptozotocin-induced diabetic mouse model and primary cultured mouse hippocampal neurons were employed to investigate the possible role of ER stress and autophagy in diabetes-induced neuronal apoptosis and cognitive impairments, and further explore the potential molecular mechanisms. ER stress markers GRP78 and CHOP were both enhanced in diabetic mice, as was phosphorylation of PERK, IRE1α, and JNK. In addition, the results indicated an elevated level of autophagy in diabetic mice, as demonstrated by up-regulated expressions of autophagy markers LC3-II, beclin 1 and down-regulated level of p62, and increased formation of autophagic vacuoles and LC3-II aggregates. Meanwhile, we found that these effects could be abolished by ER stress inhibitor 4-phenylbutyrate or JNK inhibitor SP600125 in vitro. Furthermore, neuronal apoptosis of diabetic mice was attenuated by pretreatment with 4-phenylbutyrate, while aggravated by application of inhibitor of autophagy bafilomycin A1 in vitro. These results suggest that ER stress pathway may be involved in diabetes-mediated neurotoxicity and promote the following cognitive impairments. More important, autophagy was induced by diabetes possibly through ER stress-mediated JNK pathway, which may protect neurons against ER stress-associated cell damages.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiangli Xue ◽  
Feng Li ◽  
Ming Cai ◽  
Jingyun Hu ◽  
Qian Wang ◽  
...  

Lipotoxicity of palmitic acid (PA) or high-fat diets has been reported to increase endoplasmic reticulum (ER) stress and autophagy in peripheral tissue as well as apoptotic cell death. It also can lead to an AD-like pathological pattern. However, it has been unknown that PA-induced ER stress and autophagy are involved in the regulation of neuroplastic abnormalities. Here, we investigated the roles of ER stress and autophagy in apoptosis and neuroplasticity-related protein expression in PA-treated prefrontal cells. Prefrontal cells dissected from newborn Sprague-Dawley rats were treated with PA compound with ER stress inhibitor 4-phenylbutyric acid (4-PBA) and autophagy inhibitor 3-methyladenine (3-MA) or PA alone. PA promoted ER stress and autophagy and also cause apoptosis as well as a decline in the expression of neuroplasticity-related proteins. Inhibition of ER stress decreased the expressions of neuroplasticity-related proteins and reduced autophagy activation and apoptosis in PA-treated prefrontal cells. Inhibition of autophagy exacerbated apoptosis and enhanced ER stress in PA-treated prefrontal cells. The present study illustrated that both ER stress and autophagy could be involved in apoptosis and decreased neuroplasticity-related proteins, and the interaction between ER stress and autophagy may play a critical role in apoptosis in PA-treated prefrontal cells. Our results provide new insights into the molecular mechanisms in vitro of lipotoxicity in obesity-related cognitive dysfunction.


2021 ◽  
Author(s):  
yonghong xiong ◽  
yan leng ◽  
wei li ◽  
wenyuan li ◽  
rong chen ◽  
...  

Abstract Background: Diabetic myocardial ischemia reperfusion (MI/R) injury is aggravated after myocardial infarction, which leads to myocardial damage. Molecular mechanisms associated with the diabetic ischemia-related cardiac diseases are not yet fully understood. Nogo-A is an endoplasmic reticulum (ER) protein ubiquitously expressed in tissues including in the heart. However, the mechanisms that account for the Nogo-A in MI/R injury remain unknown. Methods: SD (Sprague Dawley) rats were subjected to 45 min of ischemia, followed by 3 h reperfusion. Rats were injection with streptozotocin (60mg/kg), tauroursodeoxycholic acid injection (100mg/kg) or corresponding controls just prior to MI/R. Blood and heart samples were collected at 3 h post-reperfusion. Serum LDH and CK-MB, myocardial infarct size, histopathologic changes, apotosis and ER stress were analyzed to evaluate MI/R injury. Signaling pathways were also investigated in vitro using embryonic rat cardiomyocyte-derived H9c2 cells cultures to identify underlying mechanisms for Nogo-A in diabetic MI/R injury. Results: TUDCA treatment significantly reduced Nogo-A, GRP78 and CHOP levels, diminished myocardial infarct areas, attenuated ER stress and decreased myocardial apoptosis after MI/R. ER stress signaling was significantly decreased in the TUDCA-treated MI/R group compared with controls. The effect of Nogo-A was abrogated by pretreatment with knockdown CHOP. A positive feedback loop between Nogo-A and CHOP was found leading to an enhanced ER stress in diabetic MI/R injure. Conclusions: Our data suggest that Nogo-A mediated ER stress plays a major role in diabetic MI/R injury and Nogo-A might be a key regulator of ER stress.


2020 ◽  
Vol 21 (4) ◽  
pp. 1549 ◽  
Author(s):  
Maria Calvo-Rodriguez ◽  
Elena Hernando-Pérez ◽  
Sara López-Vázquez ◽  
Javier Núñez ◽  
Carlos Villalobos ◽  
...  

Aging is often associated with a cognitive decline and a susceptibility to neuronal damage. It is also the most important risk factor for neurodegenerative disorders, particularly Alzheimer’s disease (AD). AD is related to an excess of neurotoxic oligomers of amyloid β peptide (Aβo); however, the molecular mechanisms are still highly controversial. Intracellular Ca2+ homeostasis plays an important role in the control of neuronal activity, including neurotransmitter release, synaptic plasticity, and memory storage, as well as neuron cell death. Recent evidence indicates that long-term cultures of rat hippocampal neurons, resembling aged neurons, undergo cell death after treatment with Aβo, whereas short-term cultures, resembling young neurons, do not. These in vitro changes are associated with the remodeling of intracellular Ca2+ homeostasis with aging, thus providing a simplistic model for investigating Ca2+ remodeling in aging. In vitro aged neurons show increased resting cytosolic Ca2+ concentration, enhanced Ca2+ store content, and Ca2+ release from the endoplasmic reticulum (ER). Ca2+ transfer from the endoplasmic reticulum (ER) to mitochondria is also enhanced. Aged neurons also show decreased store-operated Ca2+ entry (SOCE), a Ca2+ entry pathway related to memory storage. At the molecular level, in vitro remodeling is associated with changes in the expression of Ca2+ channels resembling in vivo aging, including changes in N-methyl-D-aspartate NMDA receptor and inositol 1,4,5-trisphosphate (IP3) receptor isoforms, increased expression of the mitochondrial calcium uniporter (MCU), and decreased expression of Orai1/Stim1, the molecular players involved in SOCE. Additionally, Aβo treatment exacerbates most of the changes observed in aged neurons and enhances susceptibility to cell death. Conversely, the solely effect of Aβo in young neurons is to increase ER–mitochondria colocalization and enhance Ca2+ transfer from ER to mitochondria without inducing neuronal damage. We propose that cultured rat hippocampal neurons may be a useful model to investigate Ca2+ remodeling in aging and in age-related neurodegenerative disorders.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiaolin Li ◽  
Sixuan Liu ◽  
Xuan Chen ◽  
Run Huang ◽  
Lisi Ma ◽  
...  

AbstractChemotherapy-induced ovarian dysfunction is a serious adverse effect in premenopausal patients with cancer. Gonadotrophin-releasing hormone analogs (GnRHa) protect ovarian function, but its molecular mechanisms have not yet been determined. In this study, we attempted to determine the previously unknown molecular mechanism by which such protection occurs. Serum anti-Müllerian hormone (AMH) levels were tested in tumor-bearing nude mice, a series of exploratory experiments were conducted. We discovered that GnRHa protects granulosa cells from chemotherapeutic toxicity in vivo and in vitro. We also showed that CTX-induced endoplasmic reticulum stress inhibits the secretion of AMH, and treatment with GnRHa relieves ER stress and the subsequent unfolded-protein response by modulating mTOR signaling to induce autophagy. The results of mechanistic studies indicated that GnRHa-modulated mTOR signaling to induce autophagy, which alleviated CTX-induced ER stress and promoted the secretion of AMH.


Author(s):  
Hong-Xia Zhang ◽  
Jie Yuan ◽  
Rong-Shan Li

Background: Previous studies have shown that endoplasmic reticulum (ER) stress is related to the apoptosis in the development of diabetic nephropathy (DN) and thalidomide (Thd) has renal-protective effects by suppressing inflammation and proliferation of MCs in DN. However, the effect of Thd on the apoptosis of MCs in DN remains largely unclear. The present research is designed to explore the effect of Thd on apoptosis in DN and the related mechanisms. Objective: The study is designed to examine the effect and mechanism of Thd on apoptosis in type 2 diabetic mice and high glucose (HG)-induced MCs. Method: We first evaluated the ER stress markers and apoptosis-related proteins with the treatment of Thd in type 2 diabetic mice and MCs in vitro under HG conditions. MTT assay was used to assess cell viability. Additionally, we evaluated the effect of Thd treatment upon MC apoptosis through flow cytometry. Real-time polymerase chain reaction (RT-PCR) and Western blot were performed to evaluate genes and protein expression related to ER stress and apoptosis. Results: The levels of blood urea BUN, CREA, Urine albumin, and UACR in diabetic mice were significantly reduced after 8 weeks of intervention with Thd. And also, there were upregulated glucose-regulated protein 78 (GRP78), Caspase-12, and downregulated B-cell lymphoma 2 (Bcl-2) in glomeruli of DN mice. In vitro, compared with the HG group, MC apoptosis reduced dramatically with Thd treatment along with upregulation of Bcl-2 and downregulation of Bax. At the same time, ER stress markers GRP78, C/EBP homologous protein (CHOP), and Caspase-12 were also mitigated following the Thd treatment. Conclusion: The present study indicates that Thd might reduce the ER stress in DN via downregulating of GRP78, CHOP, and Caspase12 expression, ultimately mitigating MCs apoptosis.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4210
Author(s):  
Yan Zhou ◽  
Chunxiu Zhou ◽  
Xutao Zhang ◽  
Chi Teng Vong ◽  
Yitao Wang ◽  
...  

Coptisine is the major bioactive protoberberine alkaloid found in Rhizoma Coptidis. Coptisine reduces inflammatory responses and improves glucose tolerance; nevertheless, whether coptisine has vasoprotective effect in diabetes is not fully characterized. Conduit arteries including aortas and carotid arteries were obtained from male C57BL/6J mice for ex vivo treatment with risk factors (high glucose or tunicamycin) and coptisine. Some arterial rings were obtained from diabetic mice, which were induced by high-fat diet (45% kcal% fat) feeding for 6 weeks combined with a low-dose intraperitoneal injection of streptozotocin (120 mg/kg). Functional studies showed that coptisine protected endothelium-dependent relaxation in aortas against risk factors and from diabetic mice. Coptisine increased phosphorylations of AMPK and eNOS and downregulated the endoplasmic reticulum (ER) stress markers as determined by Western blotting. Coptisine elevates NO bioavailability and decreases reactive oxygen species level. The results indicate that coptisine improves vascular function in diabetes through suppression of ER stress and oxidative stress, implying the therapeutic potential of coptisine to treat diabetic vasculopathy.


Author(s):  
Changhong Li ◽  
Kui Zhang ◽  
Guangzhao Pan ◽  
Haoyan Ji ◽  
Chongyang Li ◽  
...  

Abstract Background Dehydrodiisoeugenol (DEH), a novel lignan component extracted from nutmeg, which is the seed of Myristica fragrans Houtt, displays noticeable anti-inflammatory and anti-allergic effects in digestive system diseases. However, the mechanism of its anticancer activity in gastrointestinal cancer remains to be investigated. Methods In this study, the anticancer effect of DEH on human colorectal cancer and its underlying mechanism were evaluated. Assays including MTT, EdU, Plate clone formation, Soft agar, Flow cytometry, Electron microscopy, Immunofluorescence and Western blotting were used in vitro. The CDX and PDX tumor xenograft models were used in vivo. Results Our findings indicated that treatment with DEH arrested the cell cycle of colorectal cancer cells at the G1/S phase, leading to significant inhibition in cell growth. Moreover, DEH induced strong cellular autophagy, which could be inhibited through autophagic inhibitors, with a rction in the DEH-induced inhibition of cell growth in colorectal cancer cells. Further analysis indicated that DEH also induced endoplasmic reticulum (ER) stress and subsequently stimulated autophagy through the activation of PERK/eIF2α and IRE1α/XBP-1 s/CHOP pathways. Knockdown of PERK or IRE1α significantly decreased DEH-induced autophagy and retrieved cell viability in cells treated with DEH. Furthermore, DEH also exhibited significant anticancer activities in the CDX- and PDX-models. Conclusions Collectively, our studies strongly suggest that DEH might be a potential anticancer agent against colorectal cancer by activating ER stress-induced inhibition of autophagy.


2021 ◽  
Author(s):  
Yulan Liu ◽  
Yang Meng ◽  
Chenliang Zhou ◽  
Wenfang Xia ◽  
Lu Wang ◽  
...  

Abstract BackgroundNeuroinflammation plays a critical role in the pathophysiology of Alzheimer’s disease (AD), particularly in amyloid-β (Aβ) production. But the impact of the cytokine, interleukin-17A (IL-17) on the course of AD has not been well defined. The goal was to determine the effect of IL-17 on neural damage and whether IL-17 inhibitor (Y-320) could ameliorate Aβ-induced neurotoxicity and cognitive decline.MethodsThe expression level of IL-17 was analyzed in APP/PS1 mice. Then IL-17 was injected into the lateral ventricle of C57BL WT mice and roles on synaptic dysfunction and cognitive impairments were examined. Aβ42 was injected into the lateral ventricle of to mimic Aβ42 model mice. The effects of IL-17 inhibitor by oral gavage on Aβ42-induced neurotoxicity and cognitive decline were examined. ResultsWe found that IL-17 was increased in the hippocampus of APP/PS1 transgenic mouse, which has a fundamental role in mediating brain damage in neuroinflammatory processes. Furthermore, we reported that IL-17 was administrated in primary hippocampal neurons, leading to neural damage and synaptic dysfunction. At the same time, IL-17 caused synaptic dysfunction and cognitive impairments accompanying with increased of Aβ levels in mice. In addition, we found that Y-320 could rescue Aβ42–induced neural damage in primary hippocampal neurons, and ameliorate neuronal damage and cognitive impairments in Aβ42 model mice. Interestingly, we observed that IL-17 upregulated the production of soluble amyloid precursor protein β (sAPPβ) and phosphorylation of APP at T668 (pT668), moreover, Y-320 inhibited the Aβ production by down-regulation the sAPPβ and pT668. Conclusions Blockage of IL-17 might ameliorate Aβ-induced neurotoxicity and cognitive decline. These results strongly demonstrate a potential therapeutic role for IL-17 inhibitor in AD.


2018 ◽  
Vol 8 (8) ◽  
pp. 151 ◽  
Author(s):  
K. Bergen ◽  
M. Frödin ◽  
C. von Gertten ◽  
A. Sandberg-Nordqvist ◽  
M. Sköld

Following traumatic brain injuries (TBI), insulin-like growth factor (IGF) is cortically widely upregulated. This upregulation has a potential role in the recovery of neuronal tissue, plasticity, and neurotrophic activity, though the molecular mechanisms involved in IGF regulation and the exact role of IGF after TBI remain unclear. Vitronectin (VN), an extracellular matrix (ECM) molecule, has recently been shown to be of importance for IGF-mediated cellular growth and migration. Since VN is downregulated after TBI, we hypothesized that insufficient VN levels after TBI impairs the potential beneficial activity of IGF. To test if vitronectin and IGF-1/IGFBP-2 could contribute to neurite growth, we cultured hippocampal neurons on ± vitronectin-coated coverslips and them treated with ± IGF-1/IGF binding protein 2 (IGFBP-2). Under same conditions, cell cultures were also subjected to in vitro trauma to investigate differences in the posttraumatic regenerative capacity with ± vitronectin-coated coverslips and with ± IGF-1/IGFBP-2 treatment. In both the control and trauma situations, hippocampal neurons showed a stronger growth pattern on vitronectin than on the control substrate. Surprisingly, the addition of IGF-1/IGFBP-2 showed a decrease in neurite growth. Since neurite growth was measured as the number of neurites per area, we hypothesized that IGF-1/IGFBP-2 contributes to the polarization of neurons and thus induced a less dense neurite network after IGF-1/IGFBP-2 treatment. This hypothesis could not be confirmed and we therefore conclude that vitronectin has a positive effect on neurite growth in vitro both under normal conditions and after trauma, but that addition of IGF-1/IGFBP-2 does not have a positive additive effect.


2021 ◽  
Vol 12 ◽  
Author(s):  
Min-min Guo ◽  
Sheng-biao Qu ◽  
Hui-ling Lu ◽  
Wen-bo Wang ◽  
Mu-Liang He ◽  
...  

We have previously shown that biochanin A exhibits neuroprotective properties in the context of cerebral ischemia/reperfusion (I/R) injury. The mechanistic basis for such properties, however, remains poorly understood. This study was therefore designed to explore the manner whereby biochanin A controls endoplasmic reticulum (ER) stress, apoptosis, and inflammation within fetal rat primary cortical neurons in response to oxygen-glucose deprivation/reoxygenation (OGD/R) injury, and in a rat model of middle cerebral artery occlusion and reperfusion (MCAO/R) injury. For the OGD/R in vitro model system, cells were evaluated after a 2 h OGD following a 24 h reoxygenation period, whereas in vivo neurological deficits were evaluated following 2 h of ischemia and 24 h of reperfusion. The expression of proteins associated with apoptosis, ER stress (ERS), and p38 MAPK phosphorylation was evaluated in these samples. Rats treated with biochanin A exhibited reduced neurological deficits relative to control rats following MCAO/R injury. Additionally, GRP78 and CHOP levels rose following I/R modeling both in vitro and in vivo, whereas biochanin A treatment was associated with reductions in CHOP levels but further increases in GRP78 levels. In addition, OGD/R or MCAO/R were associated with markedly enhanced p38 MAPK phosphorylation that was alleviated by biochanin A treatment. Similarly, OGD/R or MCAO/R injury resulted in increases in caspase-3, caspase-12, and Bax levels as well as decreases in Bcl-2 levels, whereas biochanin A treatment was sufficient to reverse these phenotypes. Together, these findings thus demonstrate that biochanin A can alleviate cerebral I/R-induced damage at least in part via suppressing apoptosis, ER stress, and p38 MAPK signaling, thereby serving as a potent neuroprotective agent.


Sign in / Sign up

Export Citation Format

Share Document