scholarly journals Investigations on the surface quality of grinded inner contours using different manufacturing strategies on fused silica

2021 ◽  
Vol 255 ◽  
pp. 03006
Author(s):  
Marcel Binder ◽  
Sebastian Henkel ◽  
Jens Bliedtner

In the field of optical manufacturing, fused silica has a high and constantly growing application potential. Its material advantages, such as low thermal expansion and high thermal shock resistance, as well as its high transparency from the ultraviolet to the infrared spectral range, result in a large number of application fields. For example, manufacturing processes in semiconductor technology require high-quality quartz materials throughout the wafer handling process to avoid non-permissible contamination and to withstand the high process temperatures. Another example are monolithic components for fiber preform manufacturing, where internal contours with high aspect ratios (e.g. component length to component diameter) and high surface qualities are required to draw fiber types with special properties. The demands on the complexity and accuracy of these components are constantly increasing, which is accompanied by the need to analyse and optimize modern CNC manufacturing techniques more and more. In the following, investigations on the grinding of internal contours with a high aspect ratio are presented, in which the influence of an ultrasonic assistance as well as different machining strategies are considered.

2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Mahesh Mallampati ◽  
Sreekanth Mandalapu ◽  
Govidarajulu C

The composite materials are replacing the traditional materials because oftheir superior properties such as high tensile strength, low thermal expansion, high strength to weight ratio, low cost, lightweight, high specific modulus, renewability and biodegradability which are the most basic & common attractive features of composites that make them useful for industrial applications. The developments of new materials are on the anvil and are growing day by day. The efforts to produce economically attractive composite components have resulted in several innovative manufacturing techniques currently being used in the composites industry. Generally, composites consist of mainly two phases i.e., matrix and fiber. In this study, woven roving mats (E-glass fiber orientation (-45°/45°,0°/90°, - 45°/45°),UD450GSM)were cut in measured dimensions and a mixture of Epoxy Resin (EPOFINE-556, Density-1.15gm/cm3), Hardener (FINE HARDTM 951, Density- 0.94 gm/cm3) and Acetone [(CH3)2CO, M= 38.08 g/mol] was used to manufacture the glass fiber reinforced epoxy composite by hand lay-up method. Mechanical properties such as tensile strength, SEM analysis, hardness test, density tests are evaluated.


2020 ◽  
Vol 238 ◽  
pp. 03010
Author(s):  
Marcel Binder ◽  
Sebastian Henkel ◽  
Anne-Marie Schwager ◽  
Christoph Letsch ◽  
Jens Bliedtner ◽  
...  

The material fused silica, as well as other brittle-hard materials such as glass ceramics, have great potential for use in a wide range of applications due to their special material properties. The technical advantages of these materials require sophisticated processing technologies, including polishing steps, in order to be able to use these interesting materials advantageously. In addition, a current trend in modern optical manufacturing is the use of free-form surfaces and monolithic components that combine several optical and mechanical functions in one part. Novel or improved processes are needed in order to meet future requirements for resource-saving and effective production methods at the same time.


2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000152-000157 ◽  
Author(s):  
Satoko Tasaki ◽  
Naoki Komori ◽  
Soshu Kirihara

Porous oxide ceramics such as zinc oxide are applied for dye sensitized solar cell. This device requires consideration of high surface area, mechanical strengths and porous networks. Thus, we focused on the dendrite structures constructed from micrometer order rods with coordination numbers of 4, 8, and 12. There perfectly controlled structures were fabricated by stereolithography. Variations of the aspect ratios (lattice length to diameter ratios) were adjusted to control the porosity in the range 50–80 vol. % by using computer graphic software. The dendrite models sliced into a series of cross sectional patterns with uniform thickness by using a stereolithographic file format convertor. These numerical data were transferred into the micro processing equipment. High viscosity slurry material was prepared by mixing oxide ceramic powder and photosensitive acrylic resin. This slurry was spread on a flat stage and smoothed. An ultraviolet laser beam was exposed over the deposited layer to create cross-sectional planes. Through layer-by-layer processes, solid components were fabricated. These precursors were dewaxed at 600°C for 2 h at a heating rate of 1.0°C/min and sintered at 1400°C for 2 h at a heating rate of 5.0°C/min in air. The oxide ceramics microstructure was observed using a scanning electron microscope.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2892 ◽  
Author(s):  
Nils Wegner ◽  
Daniel Kotzem ◽  
Yvonne Wessarges ◽  
Nicole Emminghaus ◽  
Christian Hoff ◽  
...  

Laser powder bed fusion (L-PBF) of metals enables the manufacturing of highly complex geometries which opens new application fields in the medical sector, especially with regard to personalized implants. In comparison to conventional manufacturing techniques, L-PBF causes different microstructures, and thus, new challenges arise. The main objective of this work is to investigate the influence of different manufacturing parameters of the L-PBF process on the microstructure, process-induced porosity, as well as corrosion fatigue properties of the magnesium alloy WE43 and as a reference on the titanium alloy Ti-6Al-4V. In particular, the investigated magnesium alloy WE43 showed a strong process parameter dependence in terms of porosity (size and distribution), microstructure, corrosion rates, and corrosion fatigue properties. Cyclic tests with increased test duration caused an especially high decrease in fatigue strength for magnesium alloy WE43. It can be demonstrated that, due to high process-induced surface roughness, which supports locally intensified corrosion, multiple crack initiation sites are present, which is one of the main reasons for the drastic decrease in fatigue strength.


2012 ◽  
Vol 538-541 ◽  
pp. 2289-2292
Author(s):  
Xiao Xiao Meng ◽  
Feng Lin He ◽  
Jiang Ying Shen ◽  
Xiang Qian Shen

The nanocrystalline perovskite La-Mn-O hollow microfibers were prepared by the gel-precursor transformation process from reagents of metal salts and citric acid. The gel precursor and resultant products were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The specific surface area was measured by the Brunauere-Emmette-Teller method. The catalytic performance of soot combustion was evaluated by thermo-gravimetric analysis under model conditions. The nanocrystalline La-Mn-O hollow microfibers calcined at 650 °C for 6 h are characterized with diameters of 2-8 µm, aspect ratios (length/diameter) about 5-15, a micro-tunnel with an estimated ratio 1/3 of the hollow diameter to fiber diameter, and a high specific surface area of 36.7 m2/g that is 1.9 times higher than the counterpart nanosized powder. This nanocrystalline La-Mn-O hollow microfibers catalyst exhibit a high catalytic activity for the soot combustion, with a low T50 of 397°C, which is largely owing to the high surface area and the micro-tunnel structure.


2000 ◽  
Vol 123 (1) ◽  
pp. 12-19 ◽  
Author(s):  
X. Cheng ◽  
A. M. Sastry ◽  
B. E. Layton

Some fundamental issues concerning the design and performance of stochastic porous structures are examined, stemming from application of advanced fibrous electrode substrates in NiMH automotive cells. These electrodes must resist corrosion and local failures under hundreds of charge/discharge cycles. Such fibrous materials can be effectively used as substrates for chemical reactions because of their combinations of high surface area and high conductivity. Key questions concerning the relationships among connectivity and conductivity, scale and variability in material response are addressed. Two techniques are developed and compared for use in predicting these materials’ conductivity. The first approach uses a statistical technique in conjunction with an adaptation of classic micromechanical models. The second approach uses the statistical generation technique, followed by an exact calculation of 2D network conductivity. The two techniques are compared with one another and with classic results. Several important conclusions about the design of these materials are presented, including the importance of use of fibers with aspect ratios greater than at least 50, the weak effect of moderate alignment for unidirectional conductivity, and the weak power-law behavior of conductivity versus volume fraction over the range of possible behaviors.


Author(s):  
Mukund Vijay ◽  
Ehson Ghandehari ◽  
Michel Goedert ◽  
Sang-Joon J. Lee

Microfluidic chips made of polymer materials such as polydimethylsiloxane (PDMS), polyimide, and cyclic olefin co-polymer have cost and manufacturing advantages over materials such as fused silica and borosilicate glass. While these materials have been extensively investigated, polymethylhydrosiloxane (PMHS) is an alternative that has a unique combination of properties in terms of UV transparency and potential for chemical surface modification. The present study investigates process development and characterization of PMHS as a new candidate material for microfluidic chip applications, in particular separation processes that would benefit from the ability to custom-engineer its surface conditions. This paper compares different approaches for fabricating microchannel features as well as options for enhancing the surface area of the channel walls. The fabrication methods include replication by casting over patterned molds, soft lithography casting, and material removal by laser ablation. Casting into solid form is achieved in 48-hours at 110 °C. Laser ablation is studied with energy dose varying from 2 mJ to 160 mJ per millimeter scanned, with channels approximately 100 microns wide occurring at 0.2 mJ/mm. Mechanical characterization is applied to quantify the hardness of cast PMHS, because fine-resolution features are limited by mold removal. PMHS samples have been measured to have a Shore A hardness of 46.2, similar to PDMS that is well-established in polymer microfluidic devices. Surface enhancement techniques including laser and plasma treatment are investigated for the prospective benefit of separation processes that require high surface-to-volume ratio. Spectrophotometry shows that PMHS exhibits transmittance even below 250 nm, which is favorable for sample analysis by UV absorption methods.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 413 ◽  
Author(s):  
Robert Müller ◽  
Lilit Ghazaryan ◽  
Paul Schenk ◽  
Sabrina Wolleb ◽  
Vivek Beladiya ◽  
...  

High-density ruthenium (Ru) thin films were deposited using Ru(EtCp)2 (bis(ethylcyclopentadienyl)ruthenium) and oxygen by thermal atomic layer deposition (ALD) and compared to magnetron sputtered (MS) Ru coatings. The ALD Ru film growth and surface roughness show a significant temperature dependence. At temperatures below 200 °C, no deposition was observed on silicon and fused silica substrates. With increasing deposition temperature, the nucleation of Ru starts and leads eventually to fully closed, polycrystalline coatings. The formation of blisters starts at temperatures above 275 °C because of poor adhesion properties, which results in a high surface roughness. The optimum deposition temperature is 250 °C in our tool and leads to rather smooth film surfaces, with roughness values of approximately 3 nm. The ALD Ru thin films have similar morphology compared with MS coatings, e.g., hexagonal polycrystalline structure and high density. Discrepancies of the optical properties can be explained by the higher roughness of ALD films compared to MS coatings. To use ALD Ru for optical applications at short wavelengths (λ = 2–50 nm), further improvement of their film quality is required.


Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 409 ◽  
Author(s):  
Luigi Calabrese ◽  
Edoardo Proverbio

Research activity concerning nanoporous zeolites has grown considerably in recent decades. The structural porosity of zeolites provides versatile functional properties such as molecular selectivity, ion and molecule storage capacity, high surface area, and pore volume which combined with excellent thermal and chemical stability can extend its application fields in several industrial sectors. In such a context, anti-corrosion zeolite coatings are an emerging technology able to offer a reliable high performing and environmental friendly alternative to conventional chromate-based protective coatings. In this article, a focused overview on anti-corrosion performances of sol-gel composite zeolite coatings is provided. The topic of this review is addressed to assess the barrier and self-healing properties of composite zeolite coating. Based on results available in the literature, a property–structure relationship of this class of composites is proposed summarizing, furthermore, the competing anti-corrosion active and passive protective mechanisms involved during coating degradation. Eventually, a brief summary and a future trend evaluation is also reported.


Sign in / Sign up

Export Citation Format

Share Document