scholarly journals Cardiovascular Protective Effects of Centella asiatica and Its Triterpenes: A Review

Planta Medica ◽  
2019 ◽  
Vol 85 (16) ◽  
pp. 1203-1215 ◽  
Author(s):  
Nur Nadia Mohd Razali ◽  
Chin Theng Ng ◽  
Lai Yen Fong

Abstract Centella asiatica, a triterpene-rich medicinal herb, is traditionally used to treat various types of diseases including neurological, dermatological, and metabolic diseases. A few articles have previously reviewed a broad range of pharmacological activities of C. asiatica, but none of these reviews focuses on the use of C. asiatica in cardiovascular diseases. This review aims to summarize recent findings on protective effects of C. asiatica and its active constituents (asiatic acid, asiaticoside, madecassic acid, and madecassoside) in cardiovascular diseases. In addition, their beneficial effects on conditions associated with cardiovascular diseases were also reviewed. Articles were retrieved from electronic databases such as PubMed and Google Scholar using keywords “Centella asiatica,” “asiatic acid,” “asiaticoside,” “madecassic acid,” and “madecassoside.” The articles published between 2004 and 2018 that are related to the aforementioned topics were selected. A few clinical studies published beyond this period were also included. The results showed that C. asiatica and its active compounds possess potential therapeutic effects in cardiovascular diseases and cardiovascular disease-related conditions, as evidenced by numerous in silico, in vitro, in vivo, and clinical studies. C. asiatica and its triterpenes have been reported to exhibit cardioprotective, anti-atherosclerotic, antihypertensive, antihyperlipidemic, antidiabetic, antioxidant, and anti-inflammatory activities. In conclusion, more clinical and pharmacokinetic studies are needed to support the use of C. asiatica and its triterpenes as therapeutic agents for cardiovascular diseases. Besides, elucidation of the molecular pathways modulated by C. asiatica and its active constituents will help to understand the mechanisms underlying the cardioprotective action of C. asiatica.

2021 ◽  
Vol 11 (18) ◽  
pp. 8475
Author(s):  
Swee Ching Tan ◽  
Subrat Kumar Bhattamisra ◽  
Dinesh Kumar Chellappan ◽  
Mayuren Candasamy

Centella asiatica is a popular herb well-known for its wide range of therapeutic effects and its use as a folk medicine for many years. Its therapeutic properties have been well correlated with the presence of asiaticoside, madecassoside, asiatic and madecassic acids, the pentacyclic triterpenes. The herb has been extensively known to treat skin conditions; nevertheless, several pre-clinical and clinical studies have scientifically demonstrated its effectiveness in other disorders. Among the active constituents that have been identified in Centella asiatica, madecassoside has been the subject of only a relatively small number of scientific reports. Therefore, this review, while including other major constituents of this plant, focuses on the therapeutic potential, pharmacokinetics and toxicity of madecassoside.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Kyoung Sik Park

The medicinal herb Centella asiatica (L.) Urban known as gotu kola has been reported to exhibit a wide range of pharmacological activities. In particular, a significant body of scientific research exists on the therapeutic properties of preparations of C. asiatica or its triterpenes in the treatment of skin diseases. The present study is aimed to provide a comprehensive overview of the beneficial effects of C. asiatica on skin diseases. Peer-reviewed articles on the potent dermatological effects of C. asiatica were acquired from PubMed, Web of Science, Scopus, ScienceDirect, and SciFinder. This review provides an understanding of pharmacological studies which confirm the potent dermatological effects and underlying molecular mechanisms of C. asiatica. This medicinal plant and its triterpenes include asiaticoside, madecassoside, and their aglycones, asiatic acid and madecassic acid. These compounds exert therapeutic effects on dermatological diseases such as acne, burns, atopic dermatitis, and wounds via NF-κB, TGF-β/Smad, MAPK, Wnt/β-catenin, and STAT signaling in in vitro and in vivo studies. However, additional rigorously controlled long-term clinical trials will be necessary to confirm the full potential of C. asiatica as a therapeutic agent.


2021 ◽  
Vol 11 (8) ◽  
pp. 3637
Author(s):  
Jun-Ho Chang ◽  
Dae-Won Kim ◽  
Seong-Gon Kim ◽  
Tae-Woo Kim

Damaged dental pulp undergoes oxidative stress and 4-hexylresorcinol (4HR) is a well-known antioxidant. In this study, we aimed to evaluate the therapeutic effects of a 4HR ointment on damaged dental pulp. Pulp cells from rat mandibular incisor were cultured and treated with 4HR or resveratrol (1–100 μM). These treatments (10–100 μM) exerted a protective effect during subsequent hydrogen peroxide treatments. The total antioxidant capacity and glutathione peroxidase activity were significantly increased following 4HR or resveratrol treatment (p < 0.05), while the expression levels of TNF-α and IL1β were decreased following the exposure to 4HR pre-treatment in an in vitro model. Additionally, the application of 4HR ointment in an exposed dental pulp model significantly reduced the expression of TNF-α and IL1β (p < 0.05). Conclusively, 4HR exerted protective effects against oxidative stress in dental pulp tissues through downregulating TNF-α and IL1β.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Wei-Jing Zhang ◽  
Miao Yang ◽  
Hua Fang

Abstract Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis.


Author(s):  
Parinaz Zivarpour ◽  
Željko Reiner ◽  
Jamal Hallajzadeh ◽  
Liaosadat Mirsafaei

: Cardiovascular diseases are some of the major causes of morbidity and mortality in developed or developing countries but in developed countries as well. Cardiac fibrosis is one of the most often pathological changes of heart tissues. It occurs as a result of extracellular matrix proteins accumulation at myocardia. Cardiac fibrosis results in impaired cardiac systolic and diastolic functions and is associated with other effects. Therapies with medicines have not been sufficiently successful in treating chronic diseases such as CVD. Therefore, the interest for therapeutic potential of natural compounds and medicinal plants has increased. Plants such as grapes, berries and peanuts contain a polyphenolic compound called "resveratrol" which has been reported to have various therapeutic properties for a variety of diseases. Studies on laboratory models that show that resveratrol has beneficial effects on cardiovascular diseases including myocardial infarction, high blood pressure cardiomyopathy, thrombosis, cardiac fibrosis, and atherosclerosis. In vitro animal models using resveratrol indicated protective effects on the heart by neutralizing reactive oxygen species, preventing inflammation, increasing neoangiogenesis, dilating blood vessels, suppressing apoptosis and delaying atherosclerosis. In this review, we are presenting experimental and clinical results of studies concerning resveratrol effects on cardiac fibrosis as a CVD outcome in humans.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jia Hui Wong ◽  
Anna M. Barron ◽  
Jafri Malin Abdullah

Natural products remain a crucial source of drug discovery for accessible and affordable solutions for healthy aging. Centella asiatica (L.) Urb. (CA) is an important medicinal plant with a wide range of ethnomedicinal uses. Past in vivo and in vitro studies have shown that the plant extract and its key components, such as asiatic acid, asiaticoside, madecassic acid and madecassoside, exhibit a range of anti-inflammatory, neuroprotective, and cognitive benefits mechanistically linked to mitoprotective and antioxidant properties of the plant. Mitochondrial dysfunction and oxidative stress are key drivers of aging and neurodegenerative disease, including Alzheimer’s disease and Parkinson’s disease. Here we appraise the growing body of evidence that the mitoprotective and antioxidative effects of CA may potentially be harnessed for the treatment of brain aging and neurodegenerative disease.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Guo Zu ◽  
Jing Guo ◽  
Ningwei Che ◽  
Tingting Zhou ◽  
Xiangwen Zhang

Abstract Ginsenoside Rg1 (Rg1) is one of the major bioactive ingredients in Panax ginseng, and it attenuates inflammation and apoptosis. The aims of our study were to explore the potential of Rg1 for the treatment of intestinal I/R injury and to determine whether the protective effects of Rg1 were exerted through the Wnt/β-catenin signaling pathway. In this study, Rg1 treatment ameliorated inflammatory factors, ROS and apoptosis that were induced by intestinal I/R injury. Cell viability was increased and cell apoptosis was decreased with Rg1 pretreatment following hypoxia/reoxygenation (H/R) in the in vitro study. Rg1 activated the Wnt/β-catenin signaling pathway in both the in vivo and in vitro models, and in the in vitro study, the activation was blocked by DKK1. Our study provides evidence that pretreatment with Rg1 significantly reduces ROS and apoptosis induced by intestinal I/R injury via activation of the Wnt/β-catenin pathway. Taken together, our results suggest that Rg1 could exert its therapeutic effects on intestinal I/R injury through the Wnt/β-catenin signaling pathway and provide a novel treatment modality for intestinal I/R injury.


2020 ◽  
Vol 21 (24) ◽  
pp. 9737
Author(s):  
Beata Olas

Recent evidence suggests that probiotics, prebiotics and synbiotics may serve as important dietary components in the prevention (especially) and treatment of cardiovascular diseases (CVD), but the recommendations for their use are often based on brief reports and small clinical studies. This review evaluates the current literature on the correlation between CVD and probiotics, prebiotics and synbiotics. Although research on probiotics, prebiotics and synbiotics has grown exponentially in recent years, particularly regarding the effect of probiotics on CVD, their mechanisms have not been clearly defined. It has been proposed that probiotics lower cholesterol levels, and may protect against CVD, by increasing bile salt synthesis and bile acid deconjugation. Similar effects have also been observed for prebiotics and synbiotics; however, probiotics also appear to have anti-oxidative, anti-platelet and anti-inflammatory properties. Importantly, probiotics not only have demonstrated effects in vitro and in animal models, but also in humans, where supplementation with probiotics decreases the risk factors of CVD. In addition, the properties of commercial probiotics, prebiotics and synbiotics remain undetermined, and further experimental research is needed before these substances can be used in the prevention and treatment of CVD. In particular, well-designed clinical trials are required to determine the influence of probiotics on trimethylamine-N-oxide (TMAO), which is believed to be a marker of CVDs, and to clarify the long-term effects, and action, of probiotic, prebiotic and synbiotic supplementation in combination with drug therapy (for example, aspirin). However, while it cannot be unequivocally stated whether such supplementation yields benefits in the prevention and treatment of CVDs, it is important to note that clinical studies performed to date have not identified any side-effects to use.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 455 ◽  
Author(s):  
Sarwat Chowdhury ◽  
Smitha Sripathy ◽  
Alyssa A. Webster ◽  
Angela Park ◽  
Uyen Lao ◽  
...  

Genetic ablation as well as pharmacological inhibition of sirtuin 2 (SIRT2), an NAD+-dependent protein deacylase, have therapeutic effects in various cancers and neurodegenerative diseases. Previously, we described the discovery of a dual SIRT1/SIRT2 inhibitor called cambinol (IC50 56 and 59 µM, respectively), which showed cytotoxic activity against cancer cells in vitro and a marked anti-proliferative effect in a Burkitt lymphoma mouse xenograft model. A number of recent studies have shown a protective effect of SIRT1 and SIRT3 in neurodegenerative and metabolic diseases as well as in certain cancers prompting us to initiate a medicinal chemistry effort to develop cambinol-based SIRT2-specific inhibitors devoid of SIRT1 or SIRT3 modulating activity. Here we describe potent cambinol-based SIRT2 inhibitors, several of which show potency of ~600 nM with >300 to >800-fold selectivity over SIRT1 and 3, respectively. In vitro, these inhibitors are found to be toxic to lymphoma and epithelial cancer cell lines. In particular, compounds 55 (IC50 SIRT2 0.25 µM and <25% inhibition at 50 µM against SIRT1 and SIRT3) and 56 (IC50 SIRT2 0.78 µM and <25% inhibition at 50 µM against SIRT1 and SIRT3) showed apoptotic as well as strong anti-proliferative properties against B-cell lymphoma cells.


2009 ◽  
Vol 87 (4) ◽  
pp. 300-309 ◽  
Author(s):  
Surabhi Chandra ◽  
Subramanyam N. Murthy ◽  
Debasis Mondal ◽  
Krishna C. Agrawal

Prolonged use of highly active antiretroviral therapy (HAART) is associated with insulin resistance in HIV-1-positive patients. Small animal models that recapitulate the long-term effects of HAART may facilitate the identification of therapeutic agents to suppress these side effects. We investigated the protective effects of black seed oil (BSO) from Nigella sativa in Sprague–Dawley rats treated with a daily HAART regimen for 7 months. The antiretroviral drugs, consisting of nelfinavir (200 mg/kg), zidovudine (50 mg/kg), and efavirenz (20 mg/kg), were mixed with diet with or without BSO (400 µL/kg) supplementation. Significant increases in insulin and C-peptide levels were observed in HAART-treated groups, and concomitant BSO treatment reduced this hyperinsulinemia. Interestingly, HAART-treated rats showed reduced size of pancreatic islets that was not seen in BSO-exposed rats. In vitro studies showed that nelfinavir, alone and in combination with HAART, induced oxidative stress and decreased glucose-induced insulin production in INS-1 cells. Suppressed insulin production was restored in cells coexposed to either BSO or thymoquinone. Our findings demonstrated that chronic HAART may increase serum insulin levels by dysregulating both insulin production by β cells and insulin action at the periphery. These deleterious effects may be prevented by dietary supplementation with BSO.


Sign in / Sign up

Export Citation Format

Share Document