scholarly journals Mangrove (Avicennia marina) leaves as an alternative feed resources for ruminants

2021 ◽  
Vol 888 (1) ◽  
pp. 012079
Author(s):  
R W W Sari ◽  
N Jamarun ◽  
Suyitman ◽  
Khasrad ◽  
G Yanti

Abstract The aim of this research was to get the best treatment for preserving of mangrove (Avicennia marina) leaves as an alternative feed resouces for ruminants. This research used experimental method using a completely randomized design (CRD) with 2 treatments and 5 replications for each treatment. The treatments are: P1 (Mangrove leaves silage) and P2 (Mangrove leaves hay). The variables observed in the in-vitro experiment were in-vitro rument fluid characteristics (pH, NH3, VFA), total gas production and methane gas production. The results of the in-vitro research showed that the P2 treatment (mangrove hay) produced : pH 6,67, VFA 83 Mm, NH3 5,44 mg/100 ml, total production gas for 48 hours 99,7 ml/hour, and methane gas production for 48 hours 65,05 ml/gr DM. From this research can be concluded that the best treatment for preservation of mangrove leaves (Avicennia marina) was the hay treatment based on the total gas and methane gas production. It can be concluded that the hay mangrove leaves (Avicennia marina) can be used as an alternative resource feed for ruminant animals.

2017 ◽  
Vol 3 (2) ◽  
Author(s):  
Sofia Sandi ◽  
Nuni Gofar ◽  
Meisji Liana Sari ◽  
Fitra Yosi ◽  
Budi Untari ◽  
...  

Aims of this study to concentration test of methane gas from swamp forage silage with in vitro methods.This study used Completely Randomized Design with 3 treatments and each treatment consisted of 5 replications. The treatments used are as follows: P1 (100% kumpai tembaga grass (Hymenachne acutigluma)), P2 (50% kumpai tembaga grass (Hymenachne acutigluma) + 50% kemon air (Neptunia oleracea lour)), P3 (100% kemon air ( Neptunia oleracea lour)). The parameters observed N-Ammonia, total gas production, methane gas concentrations in vitro and VFA partially. The results of variance showed that treatment significantly different (P <0.05) with methane concentration  in vitro with highest gas concentration treatment of silage made from 50%  kumpai tembaga grass (Hymenachne acutigluma) and  50% kemon air (Neptunia oleracea lour).Keywords: Concentration, Methane, Silage Forage Swamp, In Vitro.


2019 ◽  
Vol 157 (03) ◽  
pp. 260-271 ◽  
Author(s):  
S. El Otmani ◽  
M. Chentouf ◽  
J. L. Hornick ◽  
J. F. Cabaraux

AbstractOlive cake (OC) and cactus cladodes (CCs) are two alternative feed resources widely available in Mediterranean areas. Their use in ruminant diets was assessed according to their chemical composition, secondary compound levels and digestibility. The effects of the olive oil extraction period and process, and CCs age and sampling period were evaluated. OC was collected monthly, from November to January, from mills using either a mechanical press or 2-phase or 3-phase centrifugation processes. CCs were collected fortnightly according to age (young and mature) from April to June. Two-phase OC had the lowest content of dry matter (DM), the highest nitrogen-free extract (NFE) and total and hydrolysable tannins and was more rapidly fermentable. Mechanical press OC was the least digestible. OC DM, protein and NFE were affected linearly by the extraction period. Gas production (GP), in vitro digestibility parameters and dry and organic enzymatic digestibility changed with the extraction period. Therefore, OC chemical composition and in vitro digestibility depended mainly on the extraction process and period. Compared to mature CCs , young CCs contained more water, protein, ether-extract and phenolic compounds, but less ash and fibre. GP and digestibility parameters were not affected by age, but in vitro organic matter digestibility and microbial biomass production were higher in young cladodes. CCs chemical composition, GP and digestibility parameters were influenced by the collection period. Due to its limited nutritional quality, OC should be enriched in nitrogen, while CCs could be considered as highly valuable forage in ruminant diet.


2020 ◽  
Vol 22 (1) ◽  
pp. 16-23
Author(s):  
FM Suhartati

An experimental study aimed at assessing the reduction of gas methane production in   thin-tailed sheep through the use of Indigofera zollingeriana leaf extract was conducted from May to September 2019 at Animal Nutrition and Feed Laboratory, University of Jenderal Soedirman Purwokerto. A One Way Classification of Completely Randomized Design (CRD) experiment was employed. The treatment included Indigofera zollingeriana leaf extract with levels of 0%, 0.40%, and 0.80% of feed dry matter and each treatment was repeated six times so that there were 18 experimental units. The feed provided consisted of 60% concentrate and 40% ammoniated rice straw. The concentrate consisted of coconut cake and rice bran with a ratio composition of 1:2. The material used was rumen fluid obtained from three thin-tailed sheep, sampled from the Sokaraja slaughterhouse immediately after the sheep were slaughtered. In vitro incubation was carried out for four hours. The variables measured included protozoan population, methane gas production and bacterial populations. The data obtained were then analyzed using analysis of variance and continued with the Orthogonal Polynomial test. The use of 0.80% Indigofera zollingeriana leaf extract can reduce the protozoan populations, methane gas production and can increase the bacterial populations of sheep rumen fluid.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chatchai Kaewpila ◽  
Pongsatorn Gunun ◽  
Piyawit Kesorn ◽  
Sayan Subepang ◽  
Suwit Thip-uten ◽  
...  

AbstractImproving the nutrition of livestock is an important aspect of global food production sustainability. This study verified whether lactic acid bacteria (LAB) inoculant could promote ensiling characteristics, nutritive value, and in vitro enteric methane (CH4) mitigation of forage sorghum (FS) mixture silage in attacking malnutrition in Zebu beef cattle. The FS at the soft dough stage, Cavalcade hay (CH), and cassava chip (CC) were obtained. The treatments were designed as a 4 × 2 factorial arrangement in a completely randomized design. Factor A was FS prepared without or with CH, CC, and CH + CC. Factor B was untreated or treated with Lactobacillus casei TH14. The results showed that all FS mixture silages preserved well with lower pH values below 4.0 and higher lactic acid contents above 56.4 g/kg dry matter (DM). Adding LAB boosted the lactic acid content of silages. After 24 h and 48 h of in vitro rumen incubation, the CC-treated silage increased in vitro DM digestibility (IVDMD) with increased total gas production and CH4 production. The LAB-treated silage increased IVDMD but decreased CH4 production. Thus, the addition of L. casei TH14 inoculant could improve lactic acid fermentation, in vitro digestibility, and CH4 mitigation in the FS mixture silages.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 477-477
Author(s):  
Wenzhu Yang

Abstract Red osier dogwood (ROD) is a native shrub plant rich in phenolic compounds with antimicrobial properties. The objective of this study was to evaluate the effects of substituting barley silage with either raw ROD or ROD extract (RODE) in high-grain (HG) diet under a low media pH (5.8) on gas production (GP), dry matter (DM) disappearance (DMD) and fermentation characteristics in batch cultures. The study was a completely randomized design with 4 treatments: 1) control diet (10% barley silage and 90% barley concentrate, DM basis), control diet supplemented with 2) monensin (30 mg/kg diet DM; positive control), 3) substitution of 3% ROD or 4) 3% RODE for an equal portion of silage. Inoculum was obtained from 2 ruminally fistulated beef heifers offered the HG diet. Substrate ground (1 mm) was incubated for 24 h and the experiment repeated twice. The GP did not differ among treatments (147 ml/g DM), but the DMD differed (P &lt; 0.02) at highest for control (69.4%), lowest for ROD (58.4%) and intermediate for other treatments (64.1%). Total volatile fatty acid (VFA) concentration (mM) tended (P&lt; 0.08) to be lower with ROD (80.5) and monensin (80.1) than control (83.9). Acetate proportion was greater (P = 0.02) with ROD (46.2%) and RODE (46.9%) than control (42.4%) and monensin (42.3%). However, the propionate proportion was greater (P = 0.05) with monensin (32.1%) than other treatments (averaged 30.1%). Consequently, acetate to propionate ratio (A:P) of ROD (1.52) and RODE (1.56) was higher than monensin (1.32; P &lt; 0.01) and control (1.44; P &lt; 0.08). Differences in variables measured between ROD and RODE were minimal. These results indicated that the decreased DMD along with increased A:P with addition of ROD or RODE suggests that both ROD and RODE may be beneficial to HG fed cattle for reducing risk of rumen acidosis without negatively impacting fibre digestion.


Author(s):  
D. T. Q. Carvalho ◽  
A. R. F. Lucena ◽  
T. V. C. Nascimento ◽  
L. M. L. Moura ◽  
P. D. R. Marcelino ◽  
...  

Abstract The objective was to evaluate the fermentation profile, in vitro gas production and nutritional quality of pornunça (Manihot spp.) silages containing levels of condensed tannin (CT; 0, 4, 8 and 12% on dry matter (DM) basis), at five opening times (0, 3, 7, 14, 28 and 56 days). A completely randomized design in a 4 × 5 factorial arrangement was adopted, with four replications, totalling 80 experimental silos. The pH and NH3-N analyses were performed at all opening times of the silos. The other analyses were performed only with silages opened at 56 days of storage. There was an interaction effect between CT levels and silo opening times for pH and NH3-N. Tannin levels in pornunça silages after 56 days ensiling increased the pH and DM and reduced crude protein (CP) and neutral detergent fibre (NDF). There was a quadratic effect for NH3-N, acetic acid, butyric acid, gas losses, dry matter recovery (DMR), hemicellulose and acid detergent fibre. Inclusion of 4 and 8% CT in pornunça silage promotes a rapid decline in pH, being within the acceptable limit for adequate fermentation at 3 days of ensiling. Silages with 4% CT establish the pH at 28 days of opening the silos, with reduced NH3-N. Silages with 4% CT present higher concentrations of acetic and butyric acids and greater DMR. Inclusion of CT in pornunça silage after 56 days ensiling increases DM and reduces CP and NDF, directly affecting the in vitro degradability and reducing gas production.


2020 ◽  
Author(s):  
Thiwakorn Ampapon ◽  
Bounnaxay Viennasay ◽  
Metha Wanapat

Abstract Background A need for research searching for alternative rumen enhancers warrants immediate attention. The in vitro fermentation experiment was conducted using factorial arrangement of two factors of roughage to concentrate and seven level of red amaranth leaf powder percentage of total substrate in a Completely randomized design (CRD). Two factors, namely Factor A was two ratio of roughage (R) to concentrate (C) at 60:40 and 40:60 and Factor B was level of red amaranth (Amaranthus cruentus, L) leaf powder (RALP) supplementation at 0, 2, 4, 6, 8, 10, and 12% of total dietary substrate. Results Red amaranth leaf powder (RALP) contained phytonutrients both condensed tannins and saponins in addition with high macro minerals (Ca, K, and Mg). This experiment revealed innovations of the RALP supplementation by enhancing rumen propionate (C3) production, reducing acetate (C2) to (C3) ratio, reducing protozoal population and mitigating methane (CH4) production. Furthermore, rumen dry matter degradation percentages were remarkably enhanced (P < 0.001) by increasing RALP supplementation. Conclusion Plants rich in phytonutrients and minerals such as red amaranth leaf powder (RALP) have a vital and promising role in modulating rumen fermentation, mitigating methane production, as well as increasing substrate degradability.


2020 ◽  
Vol 18 (2) ◽  
pp. 191
Author(s):  
Muchamad Muchlas ◽  
Siti Chuzaemi ◽  
Mashudi Mashudi

<p class="MDPI17abstract"><strong>Objective: </strong>The purpose of this research was to evaluate the effect supplementation of mimosa powder as a source of condensed tannins and a single fatty acid, myristic acid, in a complete feed based on corn stover (<em>Zea mays</em>) using the in-vitro gas production method. This research has been carried out at the Animal Nutrition and Food Laboratory, Faculty of Animal Husbandry, Brawijaya University. The time of the research was conducted in August until December 2019.</p><p class="MDPI17abstract"><strong>Methods: </strong>The experimental design used randomized complete block design by ANOVA consisting four treatments and three replications which were P1= a complete feed based on corn stover (<em>Zea mays</em>) as control Diet (CD) (40% corn stover + 60 % concentrate), P2= (CD) + Mimosa Powder(MP) 1.5 %/kg DM + myristic acid (MA)2% /kg DM, P3= CD + MP 1.5 % /kg DM + MA 3% /kg DM, and P4= CD + MP 1.5 %/kg DM + MA 4 %/kg DM.</p><p class="MDPI17abstract"><strong>Results: </strong>The results showed that the treatments affected total gas production (p&lt;0.01). The highest value for total gas production was found in P1 (86.67 ml/500 mg DM) and the lowest was found in P3 (73.30 ml/500 mg DM). The results showed that gas production decreased concurrently with the increase of MA level. In vitro methane gas and carbon dioxide production was showed different (p&lt;0.05) from the control treatment. The lowest concentration of methane production was in P4 (82863.07 ppm) and the highest concentration was in treatment P1 86530.89 ppm. The highest total carbon dioxide content was P1 (436711.57 ppm) and the lowest concentration was P3 (350287.72 ppm).</p><p class="MDPI17abstract"><strong>Conclusions: </strong>The results of the research concluded that the addition of mimosa powder and 3 different levels of myristic acid in a complete feed based on corn stover can increase the nutritional value of a complete feed and reduce the production of methane gas.</p>


2020 ◽  
Vol 44 (3) ◽  
Author(s):  
Cuk Tri Noviandi ◽  
Dibya Ratnopama ◽  
Ali Agus ◽  
Ristianto Utomo

This study was done to determine the effects of bale sizes of bio-ammoniated rice straw on its nutrient quality and in vitro digestibility. Rice straw were bio-ammoniated by adding 2 g urea and 1 g probiotic/kg DM. By following a completely randomized design, rice straw was baled in 3 different weights (15, 25, and 35 kg) with six replications for each treatment, and then stored for 3 weeks. In the end of the week 3, bales were opened, aired, and then sampled for proximate analysis (dry matter, organic matter, crude protein, and crude fiber) and digestibility by in vitro gas production method. Using analysis of variance method, the proximate data showed that greater the bales size (15, 25, and 35 kg) increased crude protein (7.59, 7.86, and 9.95%, respectively; P<0.05) and decreased crude fiber contents (24.1, 22.1, and 18.8%, respectively; P<0.05). By increasing the size of bales also increased a, b, and c fractions (-0.79, 0.26, and 0.82 mL/100 mg DM; 20.2, 18.2, and 17.6 mL/100 mg DM; 0.012, 0.014, and 0.019 mL/h, respectively; P<0.05) as well as gas production (11.4, 11.5, and 13.8 mL/100 mg DM, respectively; P<0.05). It can be concluded that packing bio-ammoniated rice straw in 35 kg bale is the most effective way in increasing nutrient quality and digestibility of rice straw.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 79-79
Author(s):  
Jordan Adams ◽  
Aaron B Norris ◽  
Madeline E Rivera ◽  
Luiz Fernando Dias Batista ◽  
Luis O Tedeschi

Abstract The use of the in vitro gas production (IVGP) technique requires accurate determination of neutral detergent fiber (NDF) residue. However, the NDF determination using standard procedures are not always feasible for IVGP; thus requiring micro-NDF methods, which need autoclave (AC) and pressure cooker (PC) to boil the solution. A complete randomized design using a 3×3 factorial arrangement was implemented to investigate the effect of washing methods (WM: AC, PC, or ANKOM200) and solution ratios (WS: 100 mL neutral detergent solution (ND), 150 mL ND, or 100 mL H2O/g sample) to determine NDF residues, assuming ANKOM200 and 100 mL ND/g as the standard methodology. Each factor combination was performed in triplicate with a replicate being comprised of 12 bottles or bags (two blanks and five feedstuffs in duplicate). Feedstuffs were: alfalfa hay (AH), bermudagrass hay (BH), two high-forage rations (G1 and G2), and a high-concentrate ration (FR). Following each run, bottles were filtered to obtain the NDF. Data were analyzed by diet using a random coefficients model. An interaction of WM ′ WS was present for AH and G1 (P &lt; 0.01), G2 and FR had tendencies (P = 0.08 and 0.06, respectively), whereas BH demonstrated no interaction (P = 0.37). The PC with 100 mL or 150 mL did not differ from the standard methodology for AH, G1, G2, and FR. The BH demonstrated differences between WM and WS (P &lt; 0.01). The PC had lower NDF residue compared to the AC and ANKOM200, whereas H2O had substantially greater NDF residue relative to both ND ratios. We concluded that H2O is not a suitable substitute for ND solution regardless of the feedstuff. Both micro-NDF washing methods may be satisfactory depending on the type of feedstuff used but further investigation is required.


Sign in / Sign up

Export Citation Format

Share Document