3. Causes of refugee movements

Author(s):  
Gil Loescher

This chapter examines the causes of refugee movements. The majority of mass movements today are caused by internal conflicts, and ethnic cleansing, genocide, and politicide; religious, cultural, and ethnic intolerance; socio-economic inequalities; and increasingly by conflict-induced famine, mass starvation, and climate change. As a consequence, there has been a proliferation of complex emergencies that combine internal conflicts with large-scale displacement of people. Until the international community is able to effectively address these root causes, forced displacement will remain a common feature of world affairs. It is thus critical to ensure that international responses to forced migration also lay the foundation for refugees to find a solution to their plight.

Author(s):  
Murat Bayar ◽  
Mustafa M. Aral

In this paper, human security-related causes of large-scale forced migration (LSFM) in Africa are investigated for the period 2011–2017. As distinct from the conventional understanding of (national) security, human security involves economic, public health, environmental and other aspects of people’s wellbeing. Testing various hypotheses, we have found that civil and interstate conflicts, lack of democracy and poverty are the most important drivers of mass population displacements, whereas climate change has an indirect effect on the dependent variable. As a policy tool, foreign aid is also tested to see if it lowers the probability of LSFM. Our findings have implications for policy planning, since the conventional understanding of security falls short of addressing LSFM without taking various aspects of human security into account.


Author(s):  
Ana Maria Ibanez

The article describes the magnitude, geographical extent,  and causes of forced population displacements in Colombia. Forced migration in Colombia is a war strategy adopted by armed groups to strengthen territorial strongholds, weaken civilian support to the enemy, seize valuable lands, and produce and transport illegal drugs with ease. Forced displacement in Colombia today affects 3.5 million people. Equivalent to 7.8 percent of Colombia's population, and second worldwide only to Sudan, this shows the magnitude of the humanitarian crisis the country is facing. The phenomenon involves all of Colombia's territory and nearly 90 percent of the country's municipalities expel or receive population. In contrast to other countries, forced migration in Colombia is largely internal. Illegal armed groups are the main responsible parties, migration does not result in massive refugee streams but occurs on an individual basis, and the displaced population is dispersed throughout the territory and not focused in refugee camps. These characteristics pose unique challenges for crafting state policy that can effectively mitigate the impact of displacement.


2020 ◽  
Vol 12 (20) ◽  
pp. 8369
Author(s):  
Mohammad Rahimi

In this Opinion, the importance of public awareness to design solutions to mitigate climate change issues is highlighted. A large-scale acknowledgment of the climate change consequences has great potential to build social momentum. Momentum, in turn, builds motivation and demand, which can be leveraged to develop a multi-scale strategy to tackle the issue. The pursuit of public awareness is a valuable addition to the scientific approach to addressing climate change issues. The Opinion is concluded by providing strategies on how to effectively raise public awareness on climate change-related topics through an integrated, well-connected network of mavens (e.g., scientists) and connectors (e.g., social media influencers).


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1755
Author(s):  
Shuo Wang ◽  
Chenfeng Cui ◽  
Qin Dai

Since the early 2000s, the vegetation cover of the Loess Plateau (LP) has increased significantly, which has been fully recorded. However, the effects on relevant eco-hydrological processes are still unclear. Here, we made an investigation on the changes of actual evapotranspiration (ETa) during 2000–2018 and connected them with vegetation greening and climate change in the LP, based on the remote sensing data with correlation and attribution analysis. Results identified that the average annual ETa on the LP exhibited an obvious increasing trend with the value of 9.11 mm yr−1, and the annual ETa trend was dominated by the changes of ETa in the third quarter (July, August, and September). The future trend of ETa was predicted by the Hurst exponent. Partial correlation analysis indicated that annual ETa variations in 87.8% regions of the LP were controlled by vegetation greening. Multiple regression analysis suggested that the relative contributions of potential evapotranspiration (ETp), precipitation, and normalized difference vegetation index (NDVI), to the trend of ETa were 5.7%, −26.3%, and 61.4%, separately. Vegetation greening has a close relationship with the Grain for Green (GFG) project and acts as an essential driver for the long-term development trend of water consumption on the LP. In this research, the potential conflicts of water demanding between the natural ecosystem and social-economic system in the LP were highlighted, which were caused by the fast vegetation expansion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mulalo M. Muluvhahothe ◽  
Grant S. Joseph ◽  
Colleen L. Seymour ◽  
Thinandavha C. Munyai ◽  
Stefan H. Foord

AbstractHigh-altitude-adapted ectotherms can escape competition from dominant species by tolerating low temperatures at cooler elevations, but climate change is eroding such advantages. Studies evaluating broad-scale impacts of global change for high-altitude organisms often overlook the mitigating role of biotic factors. Yet, at fine spatial-scales, vegetation-associated microclimates provide refuges from climatic extremes. Using one of the largest standardised data sets collected to date, we tested how ant species composition and functional diversity (i.e., the range and value of species traits found within assemblages) respond to large-scale abiotic factors (altitude, aspect), and fine-scale factors (vegetation, soil structure) along an elevational gradient in tropical Africa. Altitude emerged as the principal factor explaining species composition. Analysis of nestedness and turnover components of beta diversity indicated that ant assemblages are specific to each elevation, so species are not filtered out but replaced with new species as elevation increases. Similarity of assemblages over time (assessed using beta decay) did not change significantly at low and mid elevations but declined at the highest elevations. Assemblages also differed between northern and southern mountain aspects, although at highest elevations, composition was restricted to a set of species found on both aspects. Functional diversity was not explained by large scale variables like elevation, but by factors associated with elevation that operate at fine scales (i.e., temperature and habitat structure). Our findings highlight the significance of fine-scale variables in predicting organisms’ responses to changing temperature, offering management possibilities that might dilute climate change impacts, and caution when predicting assemblage responses using climate models, alone.


2021 ◽  
Vol 97 (1) ◽  
pp. 201-218
Author(s):  
Ousseyni Kalilou

Abstract Environmental stress contributes to food insecurity, poverty, forced migration and violent conflict in the Sahel, with climate change aggravating the situation. The production of gum arabic from the acacia tree increasingly aligns with the community stakeholders’ efforts to promote climate change mitigation, adaptation and resilience. Based on expert interviews and field observations in Niger, and a reading of relevant documents, I found that gum arabic production is valuable for conflict mitigation because it helps tackle the root causes of violent conflicts. The acacia gum tree is a natural soil fixer and multinational companies have coveted the resin from the tree, which is a rising commodity and a promising source of revenue for the local inhabitants. As different communities work together and cooperate with outside actors (government agencies, international partners, NGOs and businesses), the opportunities to build social cohesion around the tree increase. By facilitating ecological improvement, social inclusion and poverty alleviation, the promotion of gum arabic production, despite other issues such as bad natural resource governance, is a critical environmental peacebuilding strategy. Hence, suitable funding of massive afforestation with the acacia tree fits with community-based natural climate solutions to global humanitarian issues by protecting and restoring the local environment.


Author(s):  
Malang Faye

AbstractIt is widely agreed that the Rohingya Muslims of Myanmar are currently named as the most persecuted minority in the world. The racial prosecution is triggered by the decades of longstanding insurgency between the Government of Myanmar and the Rohingya Muslims over the issues of religious and ethnic discrepancy. This article presents the measures taken by the international community to stop these mass killings. The article offers critical insights into strategies used by Myanmar’s government to suppress the Rohingyas. This study highlights the rights violation and humanitarian struggle faced by the Rohingya people and the humanitarian response to the crises by the international community.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 295
Author(s):  
Yuan Gao ◽  
Anyu Zhang ◽  
Yaojie Yue ◽  
Jing’ai Wang ◽  
Peng Su

Suitable land is an important prerequisite for crop cultivation and, given the prospect of climate change, it is essential to assess such suitability to minimize crop production risks and to ensure food security. Although a variety of methods to assess the suitability are available, a comprehensive, objective, and large-scale screening of environmental variables that influence the results—and therefore their accuracy—of these methods has rarely been explored. An approach to the selection of such variables is proposed and the criteria established for large-scale assessment of land, based on big data, for its suitability to maize (Zea mays L.) cultivation as a case study. The predicted suitability matched the past distribution of maize with an overall accuracy of 79% and a Kappa coefficient of 0.72. The land suitability for maize is likely to decrease markedly at low latitudes and even at mid latitudes. The total area suitable for maize globally and in most major maize-producing countries will decrease, the decrease being particularly steep in those regions optimally suited for maize at present. Compared with earlier research, the method proposed in the present paper is simple yet objective, comprehensive, and reliable for large-scale assessment. The findings of the study highlight the necessity of adopting relevant strategies to cope with the adverse impacts of climate change.


2021 ◽  
Vol 53 (1) ◽  
pp. 135-148
Author(s):  
Christopher J. Ellis ◽  
Sally Eaton

AbstractThere is growing evidence that species and communities are responding to, and will continue to be affected by, climate change. For species at risk, vulnerability can be reduced by ensuring that their habitat is extensive, connected and provides opportunities for dispersal and/or gene flow, facilitating a biological response through migration or adaptation. For woodland epiphytes, vulnerability might also be reduced by ensuring sufficient habitat heterogeneity, so that microhabitats provide suitable local microclimates, even as the larger scale climate continues to change (i.e. microrefugia). This study used fuzzy set ordination to compare bryophyte and lichen epiphyte community composition to a large-scale gradient from an oceanic to a relatively more continental macroclimate. The residuals from this relationship identified microhabitats in which species composition reflected a climate that was more oceanic or more continental than would be expected given the prevailing macroclimate. Comparing these residuals to features that operate at different scales to create the microclimate (landscape, stand and tree-scale), it was possible to identify how one might engineer microrefugia into existing or new woodland, in order to reduce epiphyte vulnerability to climate change. Multimodel inference was used to identify the most important features for consideration, which included local effects such as height on the bole, angle of bole lean and bark water holding capacity, as well as tree species and tree age, and within the landscape, topographic wetness and physical exposure.


Sign in / Sign up

Export Citation Format

Share Document